期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
数据挖掘在石油勘探数据库中的应用前景 被引量:8
1
作者 石广仁 《中国石油勘探》 CAS 2009年第1期60-64,共5页
通过世界现状分析,指出数据挖掘(Data Mining,以下简称DM)在石油勘探数据库中的应用尚处于起步阶段。在前人的工作基础上,简述了数据库DM技术的结构、功能、算法及关键技术。以一个测井解释实例具体介绍DM的操作过程、技术方法及应用效... 通过世界现状分析,指出数据挖掘(Data Mining,以下简称DM)在石油勘探数据库中的应用尚处于起步阶段。在前人的工作基础上,简述了数据库DM技术的结构、功能、算法及关键技术。以一个测井解释实例具体介绍DM的操作过程、技术方法及应用效果,验证该技术的可行性、实用性。实例中,采用多元回归分析,实现数据降维;分别采用人工神经网络和支持向量机两个挖掘算法,进行知识发现。基于国内大批石油勘探数据库(包括数据银行、数据仓库等)的陆续建成,认为DM技术的研发已提到议事日程,必将成为石油地质研究和勘探决策的有力手段。 展开更多
关键词 数据挖掘 知识发现 广义数据库 降维算法 挖掘算法 石油勘探 裂缝预测
下载PDF
Modeling and Fault Monitoring of Bioprocess Using Generalized Additive Models (GAMs) and Bootstrap
2
作者 郑蓉建 周林成 潘丰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1180-1183,共4页
Fault monitoring of bioprocess is important to ensure safety of a reactor and maintain high quality of products. It is difficult to build an accurate mechanistic model for a bioprocess, so fault monitoring based on ri... Fault monitoring of bioprocess is important to ensure safety of a reactor and maintain high quality of products. It is difficult to build an accurate mechanistic model for a bioprocess, so fault monitoring based on rich historical or online database is an effective way. A group of data based on bootstrap method could be resampling stochastically, improving generalization capability of model. In this paper, online fault monitoring of generalized additive models (GAMs) combining with bootstrap is proposed for glutamate fermentation process. GAMs and bootstrap are first used to decide confidence interval based on the online and off-line normal sampled data from glutamate fermentation experiments. Then GAMs are used to online fault monitoring for time, dissolved oxygen, oxygen uptake rate, and carbon dioxide evolution rate. The method can provide accurate fault alarm online and is helpful to provide useful information for removing fault and abnormal phenomena in the fermentation. 展开更多
关键词 bioprocess fault monitoring generalized additive model glutamic acid fermentation BOOTSTRAP MODELING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部