The evolutionary dynamics first conceived by Darwin and Wallace, referring to as Darwinian dynamics in the present paper, has been found to be universally valid in biology. The statistical mechanics and thermodynamics...The evolutionary dynamics first conceived by Darwin and Wallace, referring to as Darwinian dynamics in the present paper, has been found to be universally valid in biology. The statistical mechanics and thermodynamics, while enormous successful in physics, have been in an awkward situation of wanting a consistent dynamical understanding. Here we present from a formal point of view an exploration of the connection between thermodynamics and Darwinian dynamics and a few related topics. We first show that the stochasticity in Darwinian dynamics implies the existence temperature, hence the canonical distribution of Boltzmann-Gibbs type. In term of relative entropy the Second Law of thermodynamics is dynamically demonstrated without detailed balance condition, and is valid regardless of size of the system. In particular, the dynamical component responsible for breaking detailed balance condition does not contribute to the change of the relative entropy. Two types of stochastic dynamical equalities of current interest are explicitly discussed in the present approach: One is based on Feynman-Kac formula and another is a generalization of Einstein relation. Both are directly accessible to experimental tests. Our demonstration indicates that Darwinian dynamics represents logically a simple and straightforward starting point for statistical mechanics and thermodynamics and is complementary to and consistent with conservative dynamics that dominates the physical sciences. Present exploration suggests the existence of a unified stochastic dynamical framework both near and far from equilibrium.展开更多
The paper shows how a generalization of the elasticity theory to four dimensions and to space-time allows for a consistent description of the homogeneous and isotropic universe,including the accelerated expansion.The ...The paper shows how a generalization of the elasticity theory to four dimensions and to space-time allows for a consistent description of the homogeneous and isotropic universe,including the accelerated expansion.The analogy is manifested by the inclusion in the traditional Lagrangian of general relativity of an additional term accounting for the strain induced in the manifold(i.e.in space-time)by the curvature,be it induced by the presence of a texture defect or by a matter/energy distribution.The additional term is su?cient to account for various observed features of the universe and to give a simple interpretation for the so called dark energy.Then,we show how the same approach can be adopted back in three dimensions to obtain the equilibrium configuration of a given solid subject to strain induced by defects or applied forces.Finally,it is shown how concepts coming from the familiar elasticity theory can inspire new approaches to cosmology and in return how methods appropriated to General Relativity can be applied back to classical problems of elastic deformations in three dimensions.展开更多
基金The project supported in part by USA NIH Grant under HG002894
文摘The evolutionary dynamics first conceived by Darwin and Wallace, referring to as Darwinian dynamics in the present paper, has been found to be universally valid in biology. The statistical mechanics and thermodynamics, while enormous successful in physics, have been in an awkward situation of wanting a consistent dynamical understanding. Here we present from a formal point of view an exploration of the connection between thermodynamics and Darwinian dynamics and a few related topics. We first show that the stochasticity in Darwinian dynamics implies the existence temperature, hence the canonical distribution of Boltzmann-Gibbs type. In term of relative entropy the Second Law of thermodynamics is dynamically demonstrated without detailed balance condition, and is valid regardless of size of the system. In particular, the dynamical component responsible for breaking detailed balance condition does not contribute to the change of the relative entropy. Two types of stochastic dynamical equalities of current interest are explicitly discussed in the present approach: One is based on Feynman-Kac formula and another is a generalization of Einstein relation. Both are directly accessible to experimental tests. Our demonstration indicates that Darwinian dynamics represents logically a simple and straightforward starting point for statistical mechanics and thermodynamics and is complementary to and consistent with conservative dynamics that dominates the physical sciences. Present exploration suggests the existence of a unified stochastic dynamical framework both near and far from equilibrium.
文摘The paper shows how a generalization of the elasticity theory to four dimensions and to space-time allows for a consistent description of the homogeneous and isotropic universe,including the accelerated expansion.The analogy is manifested by the inclusion in the traditional Lagrangian of general relativity of an additional term accounting for the strain induced in the manifold(i.e.in space-time)by the curvature,be it induced by the presence of a texture defect or by a matter/energy distribution.The additional term is su?cient to account for various observed features of the universe and to give a simple interpretation for the so called dark energy.Then,we show how the same approach can be adopted back in three dimensions to obtain the equilibrium configuration of a given solid subject to strain induced by defects or applied forces.Finally,it is shown how concepts coming from the familiar elasticity theory can inspire new approaches to cosmology and in return how methods appropriated to General Relativity can be applied back to classical problems of elastic deformations in three dimensions.