In the present paper, we investigate the well-posedness of the global solutionfor the Cauchy problem of generalized long-short wave equations. Applying Kato's methodfor abstract quasi-linear evolution equations and a...In the present paper, we investigate the well-posedness of the global solutionfor the Cauchy problem of generalized long-short wave equations. Applying Kato's methodfor abstract quasi-linear evolution equations and a priori estimates of solution,we get theexistence of globally smooth solution.展开更多
In this work, we study the generalized Rosenau-KdV equation. We shall use the sech-ansatze method to derive the solitary wave solutions of this equation.
In this paper,we obtain some exact travelling wave solutions for the GF equation,the KdV Burgers equation and the RLW Burges equation with the aid of the balanced principle of the homogeneous terms.
文摘In the present paper, we investigate the well-posedness of the global solutionfor the Cauchy problem of generalized long-short wave equations. Applying Kato's methodfor abstract quasi-linear evolution equations and a priori estimates of solution,we get theexistence of globally smooth solution.
文摘In this work, we study the generalized Rosenau-KdV equation. We shall use the sech-ansatze method to derive the solitary wave solutions of this equation.
文摘In this paper,we obtain some exact travelling wave solutions for the GF equation,the KdV Burgers equation and the RLW Burges equation with the aid of the balanced principle of the homogeneous terms.