针对当前广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统时变信道估计精度低的问题,提出基于稀疏贝叶斯学习的GFDM系统联合信道估计与符号检测算法.具体地,采用无干扰导频插入的GFDM多重响应信号模型,在稀疏贝叶...针对当前广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统时变信道估计精度低的问题,提出基于稀疏贝叶斯学习的GFDM系统联合信道估计与符号检测算法.具体地,采用无干扰导频插入的GFDM多重响应信号模型,在稀疏贝叶斯学习框架下,结合期望最大化算法(Expectation-Maximization,EM)和卡尔曼滤波与平滑算法实现块时变信道的最大似然估计;基于信道状态信息的估计值进行GFDM符号检测,并通过信道估计与符号检测的迭代处理逐步提高信道估计与符号检测的精度.仿真结果表明,所提算法能够获得接近完美信道状态信息条件下的误码率性能,且具有收敛速度快、对多普勒频移鲁棒性高等优点.展开更多
贝叶斯概率矩阵分解方法因较高的预测准确度和良好的可扩展性,常用于个性化推荐系统,但其推荐精度会受初始评分矩阵稀疏特性的影响.提出一种基于广义高斯分布的贝叶斯概率矩阵分解方法GBPMF(generalized Gaussian distribution Bayesian...贝叶斯概率矩阵分解方法因较高的预测准确度和良好的可扩展性,常用于个性化推荐系统,但其推荐精度会受初始评分矩阵稀疏特性的影响.提出一种基于广义高斯分布的贝叶斯概率矩阵分解方法GBPMF(generalized Gaussian distribution Bayesian PMF),采用广义高斯分布作为先验分布,通过机器学习自动选择最优的模型参数,并基于Gibbs采样进行高效训练,从而有效缓解矩阵的稀疏性,减小预测误差.同时考虑到评分时差因素对预测过程的影响,在采样算法中添加时间因子,进一步对方法进行优化,提高预测精度.实验结果表明:GBPMF方法及其优化方法 GBPMF-T对非稀疏矩阵和稀疏矩阵均具有较高的精度,后者精度更高.当矩阵非常稀疏时,传统贝叶斯概率矩阵分解方法的精度急剧降低,而该方法则具有较好的稳定性.展开更多
文摘针对当前广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统时变信道估计精度低的问题,提出基于稀疏贝叶斯学习的GFDM系统联合信道估计与符号检测算法.具体地,采用无干扰导频插入的GFDM多重响应信号模型,在稀疏贝叶斯学习框架下,结合期望最大化算法(Expectation-Maximization,EM)和卡尔曼滤波与平滑算法实现块时变信道的最大似然估计;基于信道状态信息的估计值进行GFDM符号检测,并通过信道估计与符号检测的迭代处理逐步提高信道估计与符号检测的精度.仿真结果表明,所提算法能够获得接近完美信道状态信息条件下的误码率性能,且具有收敛速度快、对多普勒频移鲁棒性高等优点.