期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
基于广义自回归条件异方差选股模型的布林带通道突破择时量化交易
1
作者 韩策 林丹婷 +3 位作者 柯鹏飞 吕佳钰 谢宛真 仰小凤 《科技和产业》 2024年第19期209-218,共10页
提出一种综合利用广义自回归条件异方差模型进行波动率选股、布林带通道突破择时和平均真实波幅(ATR)动态止损的量化投资策略。首先,利用广义自回归条件异方差(GARCH)模型预测未来一周波动率最大的30只股票,构建股票池;其次,采用布林带... 提出一种综合利用广义自回归条件异方差模型进行波动率选股、布林带通道突破择时和平均真实波幅(ATR)动态止损的量化投资策略。首先,利用广义自回归条件异方差(GARCH)模型预测未来一周波动率最大的30只股票,构建股票池;其次,采用布林带指标进行择时,捕捉价格趋势变化;最后,根据平均真实波幅指标调整止损位,保护资本。通过多次回测,确定最佳参数。研究结果表明,该策略在不同市场环境下均表现出色,熊市具有较好的避险能力,牛市和震荡市场具有较强的盈利能力,实现了稳定的超额收益。综合运用波动率选股、价格突破和动态止损策略,为投资者提供了一种有效的量化投资方案。 展开更多
关键词 量化投资 波动率 广义自回归条件异方差(GARCH)模型 布林带通道 动态止损
下载PDF
基于小波分析与广义自回归条件异方差模型的短期电价预测 被引量:16
2
作者 谢品杰 谭忠富 +2 位作者 尚金成 侯建朝 王绵斌 《电网技术》 EI CSCD 北大核心 2008年第16期96-100,共5页
由于电价波动具有非线性及波动集群现象,因此提出了一种基于小波分析和广义自回归条件异方差模型相结合的短期电价预测新方法。首先应用小波分解原理将电价序列分解成低频部分和高频部分,在此基础上对各子序列分别建立广义自回归条件异... 由于电价波动具有非线性及波动集群现象,因此提出了一种基于小波分析和广义自回归条件异方差模型相结合的短期电价预测新方法。首先应用小波分解原理将电价序列分解成低频部分和高频部分,在此基础上对各子序列分别建立广义自回归条件异方差模型并进行预测;然后利用小波理论对各子序列的预测结果进行重构,实现对原始电价序列的预测;最后以美国加州电力市场历史数据为例进行了验证,结果表明本文方法是可行和有效的。 展开更多
关键词 短期电价预测 小波分析 广义自回归条件异方差(GARCH)模型
下载PDF
基于厚尾均值广义自回归条件异方差族模型的短期风电功率预测 被引量:54
3
作者 陈昊 万秋兰 王玉荣 《电工技术学报》 EI CSCD 北大核心 2016年第5期91-98,共8页
风电功率预测准确度的提高对提高电力系统调度效率具有重要的作用。基于对风电功率时间序列波动性的研究,推广了一种厚尾均值广义自回归条件异方差(GARCH-M)族短期风电功率预测模型,同时,基于波动补偿项的不同形式,将模型拓展为多种类... 风电功率预测准确度的提高对提高电力系统调度效率具有重要的作用。基于对风电功率时间序列波动性的研究,推广了一种厚尾均值广义自回归条件异方差(GARCH-M)族短期风电功率预测模型,同时,基于波动补偿项的不同形式,将模型拓展为多种类型的厚尾GARCH-M模型。该类模型能够捕捉风电功率时间序列波动性与其条件均值的直接关系,并能够有效刻画具有高峰度特征的实际风电功率序列的厚尾效应,使风电预测准确度提高。结合江苏地区风电场风电功率实际数据,对所提厚尾GARCH-M模型进行了参数估计,论证了存在于风电时间序列中的GARCH-M效应和厚尾效应,给出了风电功率均值和条件方差的预测方案。算例分析结果验证了所提方法的可行性和有效性,表明了考虑厚尾特征的GARCH-M族模型短期预测效果满意。 展开更多
关键词 均值广义自回归条件异方差模型 风电功率预测 厚尾效应 波动补偿系数
下载PDF
基于自回归条件密度模型的短期负荷预测方法 被引量:15
4
作者 陈昊 万秋兰 王玉荣 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期561-566,共6页
基于对负荷时间序列高阶矩时变特征的研究,提出了一种基于自回归条件密度模型的短期负荷预测新方法.该方法通过引入含时变参数的有偏分布,对负荷时间序列二阶以上矩信息进行了分析和描述.基于南京地区日用电量实际历史数据,分析了该负... 基于对负荷时间序列高阶矩时变特征的研究,提出了一种基于自回归条件密度模型的短期负荷预测新方法.该方法通过引入含时变参数的有偏分布,对负荷时间序列二阶以上矩信息进行了分析和描述.基于南京地区日用电量实际历史数据,分析了该负荷时间序列的时变高阶矩特征,建立了自回归条件密度模型.使用条件对数极大似然估计对模型参数进行了估计,实现了短期负荷预测,验证了该方法的可行性和有效性.结合算例中自回归条件密度模型时变参数的取值范围,推导了时变参数与条件高阶矩的数理关系,给出了一种刻画时间序列时变高偏度(三阶矩)、时变高峰度(四阶矩)的途径.算例分析表明,基于有偏t分布的自回归条件密度负荷预测模型的预测效果良好. 展开更多
关键词 自回归条件密度模型 时变参数 高阶矩 极大似然估计 短期负荷预测
下载PDF
基于广义自回归条件异方差模型的世界原油运价风险分析 被引量:4
5
作者 王军 张丽娜 《上海海事大学学报》 北大核心 2011年第2期20-24,共5页
为有效评估世界原油运价风险,根据世界原油运输市场运费收益的基本特性,选用基于广义误差分布(Generalized Error Distribution,GED)的广义自回归条件异方差(Generalized Auto-Re-gressive Conditional Heteroskedasticity,GARCH)模型,... 为有效评估世界原油运价风险,根据世界原油运输市场运费收益的基本特性,选用基于广义误差分布(Generalized Error Distribution,GED)的广义自回归条件异方差(Generalized Auto-Re-gressive Conditional Heteroskedasticity,GARCH)模型,计算原油运价收益率波动的风险值.该模型很好地描述了运价收益率曲线尖峰厚尾、波动聚集性以及杠杆效应等特征.以波罗的海航运交易所发布的波罗的海原油油船运价指数(Baltic Dirty Tanker Index,BDTI)为例进行研究分析,检验结果表明该方法有效. 展开更多
关键词 原油 运价风险 广义自回归条件异方差模型 广义误差分布
下载PDF
非对称广义自回归条件异方差的新模型 被引量:8
6
作者 吴硕思 方兆本 《应用概率统计》 CSCD 北大核心 2000年第4期416-422,共7页
本文提出了一个新的非对称广义自回归条件异方差的新模型,证明了该模型宽平稳及其最简模型偶数阶矩存在的充要条件.
关键词 非对称广义自回归条件异方差 最大似然估计 AGARCH模型
下载PDF
基于beta回归的迎春5号杨树树干密度混合效应模型 被引量:1
7
作者 吴新华 苗铮 +1 位作者 郝元朔 董利虎 《北京林业大学学报》 CAS CSCD 北大核心 2023年第5期67-78,共12页
【目的】探究迎春5号杨树在树干纵向上的木材密度影响因子和变异规律,构建迎春5号杨树边材、心材、树皮和树干密度混合效应beta回归模型,为树干生物量预测和木材材性研究提供参考。【方法】以黑龙江省尚志市90株迎春5号杨树解析木数据... 【目的】探究迎春5号杨树在树干纵向上的木材密度影响因子和变异规律,构建迎春5号杨树边材、心材、树皮和树干密度混合效应beta回归模型,为树干生物量预测和木材材性研究提供参考。【方法】以黑龙江省尚志市90株迎春5号杨树解析木数据为基础,构建迎春5号杨树边材、心材、树皮和树干密度的混合效应beta回归模型。采用相关性分析和最优子集法筛选beta回归基础模型的变量;利用负二倍的对数似然值、赤池信息准则、贝叶斯信息准则、调整确定系数(R_a~2)、似然比检验对收敛模型进行拟合优度的评价,利用留一交叉验证法对模型进行检验,指标为平均绝对误差(MAE)和平均绝对百分比误差;结合两种抽样方式(方案Ⅰ:不限定相对高;方案Ⅱ:限定相对高在0.1以下)对模型进行校正。【结果】边材、心材、树皮和树干密度不仅受到相对高的影响,还分别与胸径平均生长量、年龄、胸径密切相关,基于林木因子建立的混合效应beta回归模型的R_a~2分别为0.53、0.52、0.52、0.63,MAE<0.05 g/cm~3,与基础模型相比均提高了预测精度。边材和心材密度从树干基部往上先减小后增大,在相对高0.2处有拐点;树皮密度从树干基部到树梢先增大后减小,在相对高0.6处有拐点;树干密度沿着树干向上逐渐增大。固定相对高时,边材、心材密度都与胸径平均生长量呈负相关,树皮、树干密度分别与年龄、胸径呈负相关。在不限定相对高的情况下,沿着树干随机抽取4个圆盘的密度测量值来校准模型得到稳定的预测精度;限定取样高度在相对高0.1(2.0 m)以下时,对边材、心材、树皮和树干分别抽取一个圆盘(对应高度为1.0、1.3、2.0、1.0 m)的密度测量值,得到与最优抽样组合相似的预测精度。相对高、胸径平均生长量、年龄和胸径是迎春5号杨树木材密度的显著影响因子。【结论】beta回归模型可对(0,1)区间的迎春5号杨树树干密度直接模拟,引入随机效应可提高模型的预测精度。边材、心材、树皮和树干密度在树干纵向上的变化规律不同,构建的混合效应beta回归模型可为迎春5号杨树树干生物量估算和木材性质研究奠定基础。 展开更多
关键词 迎春5号杨树 木材密度 beta回归 广义线性混合模型
下载PDF
广义自回归条件异方差模型的贝叶斯参数估计 被引量:1
8
作者 徐燕 陈平雁 《统计与决策》 CSSCI 北大核心 2014年第8期16-18,共3页
文章建立基于偏正态分布的广义自回归条件异方差模型(GARCH-SN)的贝叶斯参数估计方法。通过MCMC抽样中常用的MH算法解决贝叶斯估计中遇到的高维数值计算问题,得到稳定的抽样序列。模拟显示MCMC抽样序列平稳,贝叶斯估计过程中不需要调整M... 文章建立基于偏正态分布的广义自回归条件异方差模型(GARCH-SN)的贝叶斯参数估计方法。通过MCMC抽样中常用的MH算法解决贝叶斯估计中遇到的高维数值计算问题,得到稳定的抽样序列。模拟显示MCMC抽样序列平稳,贝叶斯估计过程中不需要调整MCMC抽样,抽样后得到的均值接近真值,输入集样本量增大得到的估计值偏离真值的程度随之减小。 展开更多
关键词 偏正态分布 广义自回归条件异方差模型 贝叶斯估计 马尔科夫链蒙特卡洛
下载PDF
约束线性回归模型回归系数的条件广义岭估计
9
作者 牟国学 张尚立 《科学技术与工程》 2008年第21期5905-5906,共2页
提出了约束线性回归模型中回归系数的一种条件广义岭估计,讨论了它的优良性,证明了它在均方误差及均方误差矩阵下都优于约束最小二乘估计。
关键词 约束线性回归模型 约束最小二乘估计 条件广义岭估计
下载PDF
基于不对称自回归条件异方差模型的短期负荷预测 被引量:16
10
作者 陈昊 《电网技术》 EI CSCD 北大核心 2008年第15期84-89,共6页
研究了负荷时间序列的自回归条件异方差效应,提出了一种基于不对称自回归条件异方差模型的短期负荷预测方法。建立了广义误差分布假设下的不对称广义自回归条件异方差模型,借助模型的不对称参数,分析了不同冲击下的不对称机制,比较了各... 研究了负荷时间序列的自回归条件异方差效应,提出了一种基于不对称自回归条件异方差模型的短期负荷预测方法。建立了广义误差分布假设下的不对称广义自回归条件异方差模型,借助模型的不对称参数,分析了不同冲击下的不对称机制,比较了各种广义自回归条件异方差模型的预测能力。其中,幂指数广义自回归条件异方差-广义误差分布模型的预测效果尤为突出。最后通过实际算例验证了上述方法的可行性和有效性。 展开更多
关键词 负荷预测 不对称自回归条件异方差模型(ARCH) 逆杠杆效应 厚尾 广义误差分布(GED)
下载PDF
基于小波分解和ARIMA-GARCH-GRU组合模型的制造业PMI预测
11
作者 陆文星 任环宇 +1 位作者 梁昌勇 李克卿 《工业工程》 2024年第1期86-95,127,共11页
制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过... 制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过小波变换,由整合移动平均自回归–广义自回归条件异方差模型(ARIMA-GARCH)处理稳态低频数据,门控循环单元(GRU)处理波动性强的高频数据,将各频段预测结果进行融合得到最终预测结果。为验证模型有效性,选取一定数据量的PMI指数进行实验。结果表明,与其他常见模型对比,本文构建的组合模型具有较好的预测精度与性能,平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)分别达到0.00329、0.004162、0.65%。 展开更多
关键词 采购经理人指数(PMI) 小波分解 整合移动平均自回归模型(ARIMA) 广义自回归条件异方差模型(GARCH) 门控循环单元(GRU)
下载PDF
基于支持向量分位数回归的货币需求条件密度预测研究
12
作者 许启发 俞奕涵 蒋翠侠 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2017年第1期121-127,共7页
考虑到货币需求与其影响因素之间复杂的关系,基于支持向量分位数回归(support vector quantile regression,SVQR)模型,文章研究了货币需求及其影响因素之间的非线性依赖关系,给出了货币需求条件密度预测方法,并将其与传统的线性分位数... 考虑到货币需求与其影响因素之间复杂的关系,基于支持向量分位数回归(support vector quantile regression,SVQR)模型,文章研究了货币需求及其影响因素之间的非线性依赖关系,给出了货币需求条件密度预测方法,并将其与传统的线性分位数回归模型进行了比较。选取中国2004年1月至2014年12月期间工业增加值、消费物价指数(consumer price index,CPI)、利率与M1的月度数据进行实证研究,结果表明SVQR模型不仅能够很好地拟合货币需求,而且能够给出准确的概率密度预测结果。 展开更多
关键词 货币需求 分位数回归 支持向量分位数回归(SVQR) 条件密度预测 广义近似交叉验证(GACV) 准则
下载PDF
混合自回归条件异方差模型的谱分析
13
作者 朱文刚 茹正亮 《南京工程学院学报(自然科学版)》 2011年第1期1-4,共4页
线性时间序列模型谱密度的计算可以直接由定义获得,而非线性时间序列模型谱密度的计算目前还没有一般的理论.2001年Wong Chun-shan等将混合自回归(MAR)模型推广到混合自回归条件异方差(MAR-ARCH)模型,并且讨论了该模型的参数估计及模型... 线性时间序列模型谱密度的计算可以直接由定义获得,而非线性时间序列模型谱密度的计算目前还没有一般的理论.2001年Wong Chun-shan等将混合自回归(MAR)模型推广到混合自回归条件异方差(MAR-ARCH)模型,并且讨论了该模型的参数估计及模型选择问题,本文导出了MAR-ARCH模型自协方差函数的递推关系式及计算谱密度的算法,从而解决了这类模型的谱分析问题. 展开更多
关键词 混合自回归条件异方差模型 自协方差函数 谱分析 密度
下载PDF
基于WPD-ARIMA-GARCH组合模型的酱卤肉制品安全风险区间预测 被引量:1
14
作者 尹佳 黄茜 +7 位作者 陈翔 陈晨 陈锂 张涛 徐成 黄亚平 郭鹏程 文红 《食品科学》 EI CAS CSCD 北大核心 2024年第3期176-184,共9页
针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,... 针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型进行预测;在区间估计部分,使用广义自回归条件异方差(generalized autoregressive conditional heteroskedast,GARCH)模型对残差进行预测。本实验将建立的WPD-ARIMA-GARCH组合模型运用于某地区酱卤肉制品的风险预测,结果表明2019年的3月底和7月底该地区的酱卤肉制品安全风险较高,与实际情况相符;同时,该模型在10个不同地区的酱卤肉制品风险预测中,均方误差、平均绝对误差和平均绝对百分比误差分别为1.626、0.806和20.824;其90%置信区间的预测区间平均宽度和覆盖宽度标准值均为0.024,可以覆盖所有真实值。该模型具有较高的预测精度和较低的误差,能对酱卤肉制品质量安全起到风险防控作用,可为日常食品安全监管提供相应的技术支持。 展开更多
关键词 酱卤肉制品 小波包分解 差分自回归移动平均模型 广义自回归条件异方差模型 区间估计
下载PDF
广义线性模型(十) 被引量:3
15
作者 陈希孺 《数理统计与管理》 CSSCI 北大核心 2004年第2期73-80,共8页
本讲座是广义线性模型这个题目的一个比较系统的介绍。主要分3部分:建模、统计分析与模型选择和诊断。写作时依据的主要参考资料是L.Fahrmeir等人的《MultivariateStatisticalModelingBasedonGeneralizedLinearModels》。
关键词 广义线性模型 统计分析 Gauss-Markov条件 经验回归平面 高杠杆点 帽子矩阵
下载PDF
非线性结构向量自回归因果图的广义似然比辨识方法
16
作者 魏岳嵩 《高校应用数学学报(A辑)》 CSCD 北大核心 2016年第2期143-152,共10页
利用图模型方法研究非线性结构向量自回归模型的因果性问题.构建了非线性结构向量自回归因果图模型,提出图模型因果性的广义似然比辨识方法.构造同期因果关系和滞后因果关系的广义似然比统计量,使用bootstrap方法来确定检验统计量的原分... 利用图模型方法研究非线性结构向量自回归模型的因果性问题.构建了非线性结构向量自回归因果图模型,提出图模型因果性的广义似然比辨识方法.构造同期因果关系和滞后因果关系的广义似然比统计量,使用bootstrap方法来确定检验统计量的原分布,模拟研究论述了方法的有效性. 展开更多
关键词 非线性结构向量自回归模型 因果图 条件独立 广义似然比 BOOTSTRAP方法
下载PDF
条件广义岭估计及其诊断统计量
17
作者 张尚立 陶芸 何小玲 《吉首大学学报(自然科学版)》 CAS 2010年第6期27-31,共5页
研究了带约束线性模型中回归参数的有偏估计及其数据删除模型中度量影响大小的诊断统计量.提出条件广义岭估计,给出它在不同模型中的关系式,利用Welsch-Kuh统计量和特征值的性质,推导出删除k组数据后度量拟合值影响的上确界.通过实例分... 研究了带约束线性模型中回归参数的有偏估计及其数据删除模型中度量影响大小的诊断统计量.提出条件广义岭估计,给出它在不同模型中的关系式,利用Welsch-Kuh统计量和特征值的性质,推导出删除k组数据后度量拟合值影响的上确界.通过实例分析检验了诊断统计量的有效性. 展开更多
关键词 条件 广义岭估计 诊断统计量 约束线性模型 数据删除模型 有偏估计 回归参数 分析检验 度量 有效性 特征值 上确界 拟合值 关系式 性质 导出
下载PDF
基于LSTM-NPGARCH的电力市场售电量预测模型
18
作者 王蕾 李斌 +1 位作者 吴飞 王鹏 《科学技术创新》 2023年第20期209-212,共4页
售电量的准确预测对推动电力市场的发展和建设具有十分重要的意义,考虑售电量具有非平稳性、非线性和随时间变化的复杂特性,本文提出基于小波变换和LSTM算法的短期售电量预测模型。首先采取小波变换法将售电量数据分解为细节分量和近似... 售电量的准确预测对推动电力市场的发展和建设具有十分重要的意义,考虑售电量具有非平稳性、非线性和随时间变化的复杂特性,本文提出基于小波变换和LSTM算法的短期售电量预测模型。首先采取小波变换法将售电量数据分解为细节分量和近似分量,然后使用LSTM模型进行预测,得到初步预测结果,再使用NPGARCH模型进行预测结果修正,最后将预测的结果累加,得到最终售电量预测结果。在实验中采用某售电公司的真实数据集,基于历史统计售电量数据的预测结果分析表明,本文提出的预测模型具有良好的预测精度。 展开更多
关键词 售电量预测 小波分解 长短期记忆神经网络 非参数广义自回归条件异方差模型
下载PDF
基于PSO-GRNN模型的夜光藻密度经验算法 被引量:1
19
作者 李瑞东 宋金玲 +1 位作者 刘建 李警波 《河北科技师范学院学报》 CAS 2020年第4期48-52,共5页
为了准确预测夜光藻密度,将粒子群优化算法(PSO)和广义回归神经网络(GRNN)相结合,提出一种新的夜光藻密度预测模型PSO-GRNN。该模型采用粒子群算法来选取广义回归神经网络最优的平滑因子,减少人为因素对预测结果的影响,同时提高模型的... 为了准确预测夜光藻密度,将粒子群优化算法(PSO)和广义回归神经网络(GRNN)相结合,提出一种新的夜光藻密度预测模型PSO-GRNN。该模型采用粒子群算法来选取广义回归神经网络最优的平滑因子,减少人为因素对预测结果的影响,同时提高模型的泛化能力。实验结果表明,PSO-GRNN模型相对BP模型、RBF模型、GRNN模型对夜光藻密度的预测精度更高。 展开更多
关键词 夜光藻密度 预测模型 粒子群优化算法 广义回归神经网络
下载PDF
改进核密度估计下的线性模型 被引量:1
20
作者 杨复兴 《天水师范学院学报》 2002年第5期5-6,共2页
提出了应用线性回归方法改进核密度估计的一种方法,所得到的线性模型能按照广义LS估计.
关键词 密度估计 线性模型 广义最小二乘估计 线性回归方法 随机误差
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部