应用Leray-Schauder延拓定理,得到了二阶常微分方程多点边值问题x″(t)=f(t,x(t),x′(t))+e(t),t∈(0,1)αx(0)-βx′(0)=sum from i=1 to m-2 aix(ξi),γx(1)+δx′(1)=sum from j=1 to n-2 bjx(τj)解的存在性,其中f:[0,1]×R2→...应用Leray-Schauder延拓定理,得到了二阶常微分方程多点边值问题x″(t)=f(t,x(t),x′(t))+e(t),t∈(0,1)αx(0)-βx′(0)=sum from i=1 to m-2 aix(ξi),γx(1)+δx′(1)=sum from j=1 to n-2 bjx(τj)解的存在性,其中f:[0,1]×R2→R满足Caratheodory条件,e(.)∈L1(0,1),ai,bj∈R,ξi,τj∈(0,1),i=1,2,…,m-2,j=1,2,…,n-2,0<ξ1<ξ2<…<ξm-2<1,0<τ1<τ2<…<τn-2<1.展开更多
文摘应用Leray-Schauder延拓定理,得到了二阶常微分方程多点边值问题x″(t)=f(t,x(t),x′(t))+e(t),t∈(0,1)αx(0)-βx′(0)=sum from i=1 to m-2 aix(ξi),γx(1)+δx′(1)=sum from j=1 to n-2 bjx(τj)解的存在性,其中f:[0,1]×R2→R满足Caratheodory条件,e(.)∈L1(0,1),ai,bj∈R,ξi,τj∈(0,1),i=1,2,…,m-2,j=1,2,…,n-2,0<ξ1<ξ2<…<ξm-2<1,0<τ1<τ2<…<τn-2<1.