本文研究广义部分线性单指标模型(generalized partially linear single-index models,GPLSIMs)的模型平均问题.在实际应用中,GPLSIMs由于其灵活性和易解释性受到广泛关注.然而,GPLSIMs在应用中存在两类不确定性:变量的不确定性和单指...本文研究广义部分线性单指标模型(generalized partially linear single-index models,GPLSIMs)的模型平均问题.在实际应用中,GPLSIMs由于其灵活性和易解释性受到广泛关注.然而,GPLSIMs在应用中存在两类不确定性:变量的不确定性和单指标连接函数光滑度的不确定性.为了解决该不确定性问题,本文提出一种GPLSIMs的最优模型平均方法,该方法通过最大交叉验证准则得到数据驱动的权重.在模型误设定假设和发散模型空间的框架下,本文证明在最小化Kullback-Leibler(KL)损失准则下,所提出的模型平均估计渐近最优.同时,当候选模型集中存在伪真模型时,本文证明基于交叉验证准则得到的权重渐近地集中在伪真模型上.此外,基于提出的模型平均方法,本文为GPLSIMs构建了一种变量重要性度量,并证明该度量可以渐近识别所有真实模型中的变量.模拟研究和两个实际数据分析均展示了本文提出的方法相对于几种现有方法的优势.展开更多
本文讨论了指数族广义部分线性单指数模型(Generalized Partially Linear Single Index Models,GPLSIM)的惩罚样条迭代估计,提出了基于惩罚似然和一组预先取定的单指数参数向量α的初始估计的迭代估计算法。另外本文还通过一组模拟数据...本文讨论了指数族广义部分线性单指数模型(Generalized Partially Linear Single Index Models,GPLSIM)的惩罚样条迭代估计,提出了基于惩罚似然和一组预先取定的单指数参数向量α的初始估计的迭代估计算法。另外本文还通过一组模拟数据的分析对所提出的迭代算法进行了验证。展开更多
文摘本文研究广义部分线性单指标模型(generalized partially linear single-index models,GPLSIMs)的模型平均问题.在实际应用中,GPLSIMs由于其灵活性和易解释性受到广泛关注.然而,GPLSIMs在应用中存在两类不确定性:变量的不确定性和单指标连接函数光滑度的不确定性.为了解决该不确定性问题,本文提出一种GPLSIMs的最优模型平均方法,该方法通过最大交叉验证准则得到数据驱动的权重.在模型误设定假设和发散模型空间的框架下,本文证明在最小化Kullback-Leibler(KL)损失准则下,所提出的模型平均估计渐近最优.同时,当候选模型集中存在伪真模型时,本文证明基于交叉验证准则得到的权重渐近地集中在伪真模型上.此外,基于提出的模型平均方法,本文为GPLSIMs构建了一种变量重要性度量,并证明该度量可以渐近识别所有真实模型中的变量.模拟研究和两个实际数据分析均展示了本文提出的方法相对于几种现有方法的优势.
文摘本文讨论了指数族广义部分线性单指数模型(Generalized Partially Linear Single Index Models,GPLSIM)的惩罚样条迭代估计,提出了基于惩罚似然和一组预先取定的单指数参数向量α的初始估计的迭代估计算法。另外本文还通过一组模拟数据的分析对所提出的迭代算法进行了验证。