The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entro...The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Fhrther it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.展开更多
Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole en...Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.展开更多
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-- Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coetticient ...Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-- Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coetticient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty prlnciple and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.展开更多
We study the entropy of Schwarzschild-de Sitter black holes based on generalized uncertainty principle with brick-wall method by counting degrees of freedom near the horizons and obtain the entropy proportional to the...We study the entropy of Schwarzschild-de Sitter black holes based on generalized uncertainty principle with brick-wall method by counting degrees of freedom near the horizons and obtain the entropy proportional to the surface area at the horizons without cut-off. And reveal the possible value of the minimum length.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10374075 and Natural Science Foundation of Shanxi Province of China under Grant No. 20001009
文摘The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Fhrther it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.
基金Youth Scientific Foundation of Sichuan Education Department,国家自然科学基金
文摘Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.
基金The project supported by the Natural Science Foundation of Shanxi Province under Grant No. 2006011012 tCorresponding author,
文摘Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-- Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coetticient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty prlnciple and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.
基金Supported by National Natural Science Foundation of China under Grant Nos.11275099,11435006,11405130the Double FirstClass University Construction Project of Northwest University
文摘We study the entropy of Schwarzschild-de Sitter black holes based on generalized uncertainty principle with brick-wall method by counting degrees of freedom near the horizons and obtain the entropy proportional to the surface area at the horizons without cut-off. And reveal the possible value of the minimum length.