In this paper,we obtain some exact travelling wave solutions for the GF equation,the KdV Burgers equation and the RLW Burges equation with the aid of the balanced principle of the homogeneous terms.
In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution eq...In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution equations with nonlinear terms of any order. Compared with most existing tanh methods for finding travelling wave solutions, the proposed method not only recovers the results by most known algebraic methods, but also provides new and more general solutions. We choose the generalized Burgers-Fisher equation with nonlinear terms of any order to illustrate our method. As a result, we obtain several new kinds of exact solutions for the equation. This approach can also be applied to other nonlinear evolution equations with nonlinear terms of any order.展开更多
The generalized Riccati equation vational expansion method is extended in this paper. Several exact solutions for the generalized Burgers-Fisher equation with variable coefficients are obtained by this method, and som...The generalized Riccati equation vational expansion method is extended in this paper. Several exact solutions for the generalized Burgers-Fisher equation with variable coefficients are obtained by this method, and some of which are derived for the first time. It is concluded from the results that this approach is simple and efficient even in solving partial differential equations with variable coefficients.展开更多
文摘In this paper,we obtain some exact travelling wave solutions for the GF equation,the KdV Burgers equation and the RLW Burges equation with the aid of the balanced principle of the homogeneous terms.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution equations with nonlinear terms of any order. Compared with most existing tanh methods for finding travelling wave solutions, the proposed method not only recovers the results by most known algebraic methods, but also provides new and more general solutions. We choose the generalized Burgers-Fisher equation with nonlinear terms of any order to illustrate our method. As a result, we obtain several new kinds of exact solutions for the equation. This approach can also be applied to other nonlinear evolution equations with nonlinear terms of any order.
基金Supported by the National Basic Research Project of China (973 Program No. 2006CB705500)by the National Natural Science Foundation of China under Grant Nos. 10975216, 10635040by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20093402110032
文摘The generalized Riccati equation vational expansion method is extended in this paper. Several exact solutions for the generalized Burgers-Fisher equation with variable coefficients are obtained by this method, and some of which are derived for the first time. It is concluded from the results that this approach is simple and efficient even in solving partial differential equations with variable coefficients.