讨论了方程L_nX(t)+sum from (j=0) to m b_j(t)f_j(X(t-τ_j(t)))=P(t)(其中L_n*=1/(P_n(t))d/(dt)1/(P_(n-1)(t)…d/(dt)1/(P_1(t))×d/(dt)*/(P_0(t)),0<τ_j(t)≤τ,j=0,…,m)解的渐近性质,给出了解有界及解趋于零的判定准则.
文摘讨论了方程L_nX(t)+sum from (j=0) to m b_j(t)f_j(X(t-τ_j(t)))=P(t)(其中L_n*=1/(P_n(t))d/(dt)1/(P_(n-1)(t)…d/(dt)1/(P_1(t))×d/(dt)*/(P_0(t)),0<τ_j(t)≤τ,j=0,…,m)解的渐近性质,给出了解有界及解趋于零的判定准则.