为了研究对任意素数模p的一类广义Kloosterman和的四次均值,利用初等与解析方法、Gauss和以及三角和的转换性质引入了当素数p≡1 mod 4时该均值的计算问题,并将该类均值转化为特征和的简易形式。从计算结果上对均值的估计具有充分性,从...为了研究对任意素数模p的一类广义Kloosterman和的四次均值,利用初等与解析方法、Gauss和以及三角和的转换性质引入了当素数p≡1 mod 4时该均值的计算问题,并将该类均值转化为特征和的简易形式。从计算结果上对均值的估计具有充分性,从计算方法上对广义Kloosterman和各种形式的四次均值研究具有重要的参考价值。此外,这也为指数和均值计算问题提供了一种新的转化思路与方法,必将对有关问题的进一步探索起到推动作用。展开更多
概率密度演化方法(probability density evolution equation,PDEM)为非线性随机结构的动力响应分析提供了新的途径.通过PDEM获得结构响应概率密度函数(probability density function,PDF)的关键步骤是求解广义概率密度演化方程(generali...概率密度演化方法(probability density evolution equation,PDEM)为非线性随机结构的动力响应分析提供了新的途径.通过PDEM获得结构响应概率密度函数(probability density function,PDF)的关键步骤是求解广义概率密度演化方程(generalized probability density evolution equation,GDEE).对于GDEE的求解通常采用有限差分法,然而,由于GDEE是初始条件间断的变系数一阶双曲偏微分方程,通过有限差分法求解GDEE可能会面临网格敏感性问题、数值色散和数值耗散现象.文章从全局逼近的角度出发,基于Chebyshev拟谱法为GDEE构造了全局插值格式,解决了数值色散、数值耗散以及网格敏感性问题.考虑GDEE的系数在每个时间步长均为常数,推导了GDEE在每一个时间步长内时域上的序列矩阵指数解.由于序列矩阵指数解形式上是解析的,从而很好地克服了数值稳定性问题.两个数值算例表明,通过Chebyshev拟谱法结合时域的序列矩阵指数解求解GDEE得到的结果与精确解以及Monte Carlo模拟的结果非常吻合,且数值耗散和数值色散现象几乎可以忽略.此外,拟谱法具有高效的收敛性且序列矩阵指数解不受CFL (Courant-Friedrichs-Lewy)条件的限制,因此该方法具有良好的数值稳定性和计算效率.展开更多
文摘为了研究对任意素数模p的一类广义Kloosterman和的四次均值,利用初等与解析方法、Gauss和以及三角和的转换性质引入了当素数p≡1 mod 4时该均值的计算问题,并将该类均值转化为特征和的简易形式。从计算结果上对均值的估计具有充分性,从计算方法上对广义Kloosterman和各种形式的四次均值研究具有重要的参考价值。此外,这也为指数和均值计算问题提供了一种新的转化思路与方法,必将对有关问题的进一步探索起到推动作用。
文摘概率密度演化方法(probability density evolution equation,PDEM)为非线性随机结构的动力响应分析提供了新的途径.通过PDEM获得结构响应概率密度函数(probability density function,PDF)的关键步骤是求解广义概率密度演化方程(generalized probability density evolution equation,GDEE).对于GDEE的求解通常采用有限差分法,然而,由于GDEE是初始条件间断的变系数一阶双曲偏微分方程,通过有限差分法求解GDEE可能会面临网格敏感性问题、数值色散和数值耗散现象.文章从全局逼近的角度出发,基于Chebyshev拟谱法为GDEE构造了全局插值格式,解决了数值色散、数值耗散以及网格敏感性问题.考虑GDEE的系数在每个时间步长均为常数,推导了GDEE在每一个时间步长内时域上的序列矩阵指数解.由于序列矩阵指数解形式上是解析的,从而很好地克服了数值稳定性问题.两个数值算例表明,通过Chebyshev拟谱法结合时域的序列矩阵指数解求解GDEE得到的结果与精确解以及Monte Carlo模拟的结果非常吻合,且数值耗散和数值色散现象几乎可以忽略.此外,拟谱法具有高效的收敛性且序列矩阵指数解不受CFL (Courant-Friedrichs-Lewy)条件的限制,因此该方法具有良好的数值稳定性和计算效率.