This paper investigates the finite-time generalized outer synchronization between two complex dynamical networks with different dynamical behaviors. The two networks can be undirected or directed, and they may also co...This paper investigates the finite-time generalized outer synchronization between two complex dynamical networks with different dynamical behaviors. The two networks can be undirected or directed, and they may also contain isolated nodes and clusters. By using suitable controllers, sufficient conditions for finite-time generalized outer synchronization are derived based on the finite-time stability theory. Finally, numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of control parameters on the synchronization time is also numerically demonstrated.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.61203304,61203055 and 10901145the Fundamental Research Funds for the Central Universities under Grant Nos.2011QNA26,2010LKSX04,and 2010LKSX01
文摘This paper investigates the finite-time generalized outer synchronization between two complex dynamical networks with different dynamical behaviors. The two networks can be undirected or directed, and they may also contain isolated nodes and clusters. By using suitable controllers, sufficient conditions for finite-time generalized outer synchronization are derived based on the finite-time stability theory. Finally, numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of control parameters on the synchronization time is also numerically demonstrated.