The salt-gradient operation mode used in ion-exchange simulated moving bed chromatography (SMBC) can improve the efficiency of protein separations. A detailed model that takes into account any kind of adsorption/ion-e...The salt-gradient operation mode used in ion-exchange simulated moving bed chromatography (SMBC) can improve the efficiency of protein separations. A detailed model that takes into account any kind of adsorption/ion-exchange equilibrium, salt gradient, size exclusion, mass transfer resistance, and port periodic switching mechanism, was developed to simulate the complex dynamics. The model predictions were verified by the experimental data on upward and downward gradients for protein separations reported in the literature. All design and operating parameters (number, configuration, length and diameter of columns, particle size, switching period, flow rates of feed, raffinate, desorbent and extract, protein concentrations in feed, different salt concentrations in desorbent and feed) can be chosen correctly by numerical simulation. This model can facilitate the design, operation, optimization, control and scale-up of salt-gradient ion-exchange SMBC for protein separations.展开更多
Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height ...Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height are measured in a conical spouted bed of 100 mm I.D.at different gas velocities.The simulation results are compared with measurements of bed pressure drop and fountain height.The comparison shows that the drag coefficient model used in cylindrical beds under-predicted bed pressure drop and fountain height in conical spouted beds due to the partial weight of particles supported by the inclined side walls.It is found that the numerical results using the drag coefficient model proposed based on the conical spouted bed in this study are in good agreement with experimental data.The present study provides a useful basis for further works on the CFD simulation of conical spouted bed.展开更多
文摘The salt-gradient operation mode used in ion-exchange simulated moving bed chromatography (SMBC) can improve the efficiency of protein separations. A detailed model that takes into account any kind of adsorption/ion-exchange equilibrium, salt gradient, size exclusion, mass transfer resistance, and port periodic switching mechanism, was developed to simulate the complex dynamics. The model predictions were verified by the experimental data on upward and downward gradients for protein separations reported in the literature. All design and operating parameters (number, configuration, length and diameter of columns, particle size, switching period, flow rates of feed, raffinate, desorbent and extract, protein concentrations in feed, different salt concentrations in desorbent and feed) can be chosen correctly by numerical simulation. This model can facilitate the design, operation, optimization, control and scale-up of salt-gradient ion-exchange SMBC for protein separations.
基金Supported by the National Natural Science Foundation of China(51206020)the Program for New Century Excellent Talents in University(NCET-12-0703)the Northeast Petroleum University Foundation
文摘Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height are measured in a conical spouted bed of 100 mm I.D.at different gas velocities.The simulation results are compared with measurements of bed pressure drop and fountain height.The comparison shows that the drag coefficient model used in cylindrical beds under-predicted bed pressure drop and fountain height in conical spouted beds due to the partial weight of particles supported by the inclined side walls.It is found that the numerical results using the drag coefficient model proposed based on the conical spouted bed in this study are in good agreement with experimental data.The present study provides a useful basis for further works on the CFD simulation of conical spouted bed.