序列到序列模型已经被广泛用于抽象文本摘要中,主要将源端语句的词序列通过神经网络生成摘要的词序列.在生成过程中,源端语句所携带的信息被编码,继而由解码器生成摘要.源端句子中包含有两种类型的信息,一类是与摘要有关联的信息,另一...序列到序列模型已经被广泛用于抽象文本摘要中,主要将源端语句的词序列通过神经网络生成摘要的词序列.在生成过程中,源端语句所携带的信息被编码,继而由解码器生成摘要.源端句子中包含有两种类型的信息,一类是与摘要有关联的信息,另一类是与摘要无关的冗余信息.为了区分这两类信息,提出了一种新的模型架构,在序列到序列模型的目标端加入冗余序列信息,通过解码器分别生成摘要文本以及冗余文本.将该模型应用于Gigaword英文测试集和LCSTS中文测试集,测试结果表明:相对于基准系统Transformer模型,加入冗余序列的Transformer模型在评估指标ROUGE-1(recall-oriented understudy for gisting evaluation-1)下的得分提高了0.7个百分点,证明该模型能够生成更高质量的抽象文本摘要.展开更多
文摘序列到序列模型已经被广泛用于抽象文本摘要中,主要将源端语句的词序列通过神经网络生成摘要的词序列.在生成过程中,源端语句所携带的信息被编码,继而由解码器生成摘要.源端句子中包含有两种类型的信息,一类是与摘要有关联的信息,另一类是与摘要无关的冗余信息.为了区分这两类信息,提出了一种新的模型架构,在序列到序列模型的目标端加入冗余序列信息,通过解码器分别生成摘要文本以及冗余文本.将该模型应用于Gigaword英文测试集和LCSTS中文测试集,测试结果表明:相对于基准系统Transformer模型,加入冗余序列的Transformer模型在评估指标ROUGE-1(recall-oriented understudy for gisting evaluation-1)下的得分提高了0.7个百分点,证明该模型能够生成更高质量的抽象文本摘要.