期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
序列平均模型提高GPS控制测量基线解算精度的探讨
1
作者 叶培 安立宝 《矿山测量》 2014年第5期15-18,6,共4页
在GPS数据后期处理中,基线解算精度的高低会大大影响整个GPS数据的平差精度,如何找到一个合理的模型来尽量提高GPS基线解算精度是一个很值得探讨的问题。文中利用阳山金矿近几年采集的GPS控制测量野外数据,使用序列平均模型,采取4种方... 在GPS数据后期处理中,基线解算精度的高低会大大影响整个GPS数据的平差精度,如何找到一个合理的模型来尽量提高GPS基线解算精度是一个很值得探讨的问题。文中利用阳山金矿近几年采集的GPS控制测量野外数据,使用序列平均模型,采取4种方案进行基线解算数据比较,同时充分考虑卫星残差带来的影响,对序列平均模型提高精度的效果进行评估,发现序列平均模型是一个能提高GPS基线解算精度的模型,并且该模型可靠性较高。 展开更多
关键词 序列平均模型 基线解算 GPS 卫星残差 多路径效应
下载PDF
基于泛函序列时变自回归滑动平均模型的弹箭时变模态参数递推估计方法 被引量:3
2
作者 余磊 张永励 +1 位作者 袁梦笛 刘瑞卿 《兵工学报》 EI CAS CSCD 北大核心 2020年第11期2189-2197,共9页
随着弹簧系统朝着大型化、高速化、智能化发展,飞行状态下弹箭系统的固有特性对整体结构的影响不可忽视。针对弹箭在飞行状态下的时变模态参数辨识问题进行研究,基于泛函序列时变自回归滑动平均(FS-TARMA)模型,提出一种时变模态参数的... 随着弹簧系统朝着大型化、高速化、智能化发展,飞行状态下弹箭系统的固有特性对整体结构的影响不可忽视。针对弹箭在飞行状态下的时变模态参数辨识问题进行研究,基于泛函序列时变自回归滑动平均(FS-TARMA)模型,提出一种时变模态参数的递推估计方法。该方法采用墨西哥帽小波基作为TARMA模型时变系数的空间基底,并借鉴于无结构化TARMA模型递推估计思想,将投影参数矩阵视为振动响应数据长度的变量,实现了投影参数矩阵的递推估计。通过有限单元法建立阿里安V号芯级运载火箭时变有限元模型,对所提方法进行验证。结果表明:递推辨识方法与传统批量算法相比,在辨识精度上,3阶模态频率辨识结果最大相对误差在5%以内;在计算效率上,递推辨识方法的计算时间缩短了9.38倍。 展开更多
关键词 弹箭时变结构 模态参数辨识 递推估计 泛函序列时变自回归滑动平均模型
下载PDF
ARIMA时间序列和BP神经网络在传染病预测中的比较 被引量:16
3
作者 董选军 贾伟娜 《现代实用医学》 2010年第2期142-143,147,F0004,共4页
目的比较自回归滑动平均时间序列模型和神经网络对传染病的预测效率。方法根据1985—2004年伤寒、副伤寒按季度发病率数据资料,利用dps7.55软件中的ARIMA时间序列、神经网络建立预测模型,用2005—2007年的伤寒、副伤寒季度发病率对二种... 目的比较自回归滑动平均时间序列模型和神经网络对传染病的预测效率。方法根据1985—2004年伤寒、副伤寒按季度发病率数据资料,利用dps7.55软件中的ARIMA时间序列、神经网络建立预测模型,用2005—2007年的伤寒、副伤寒季度发病率对二种预测模型进行检验,从而比较二种模型的优劣。结果用ARIMA时间序列分析得到拟合度为50.15%,验证模型的残差平方和为5154.38;用神经网络分析得到拟合度为73.12%,验证模型的残差平方和为3559.24。结论神经网络模型更为适用于预测宁波市镇海区伤寒、副伤寒发病趋势。 展开更多
关键词 伤寒 副伤寒 自回归滑动平均时间序列模型 神经网络 预测
下载PDF
纵向数据中评估暴露总效应的序列条件平均模型
4
作者 王小磊 田梦圆 +2 位作者 张娜 高红 谭红专 《中华流行病学杂志》 CAS CSCD 北大核心 2020年第1期111-114,共4页
在前瞻性队列研究中,经常需要对研究对象进行多次随访,其产生的多个观测值之间相互关联,常导致时依性混杂,这种情况下的数据一般不满足传统的多因素回归分析的应用条件。序列条件平均模型(SCMM)是一种可以处理时依性混杂的新方法。本文... 在前瞻性队列研究中,经常需要对研究对象进行多次随访,其产生的多个观测值之间相互关联,常导致时依性混杂,这种情况下的数据一般不满足传统的多因素回归分析的应用条件。序列条件平均模型(SCMM)是一种可以处理时依性混杂的新方法。本文主要对SCMM的基本原理、步骤及特点进行概括。 展开更多
关键词 序列条件平均模型 时依性协变量 倾向评分 广义估计方程
原文传递
药物流行病学研究中的时依性变量处理方法简介及比较 被引量:2
5
作者 梁际洲 郭晓晶 +7 位作者 许金芳 陈晨鑫 韦连慧 陈枭 郑轶 迟立杰 叶小飞 贺佳 《药物流行病学杂志》 CAS 2022年第3期190-197,共8页
基于纵向数据的因果推断,进而评价药物安全性与有效性是药物流行病学的重要工作之一。但在现实研究中由于存在不同程度的混杂,无法直接计算药物效应值。混杂中时依性混杂最为常见,却难以通过常规方式消除影响。除了混杂因素,在一些试验... 基于纵向数据的因果推断,进而评价药物安全性与有效性是药物流行病学的重要工作之一。但在现实研究中由于存在不同程度的混杂,无法直接计算药物效应值。混杂中时依性混杂最为常见,却难以通过常规方式消除影响。除了混杂因素,在一些试验中暴露因素同样具有时依性。本文基于领域相关研究,试图对时依性变量的种类进行辨析,简要介绍含时依系数的Cox回归、边缘结构模型、结构嵌套的加速失效时间模型以及序列条件平均模型基本思想与计算方法,总结4种方法的优缺点与应用方向,以期为科研人员在分析中对时依性变量控制有所借鉴与启示。 展开更多
关键词 时依性变量 COX回归 边缘结构模型 加速失效模型 序列条件平均模型
下载PDF
Effects of Snow Cover on Ground Thermal Regime: A Case Study in Heilongjiang Province of China 被引量:2
6
作者 LI Xiaofeng ZHENG Xingming +3 位作者 WU Lili ZHAO Kai JIANG Tao GU Lingjia 《Chinese Geographical Science》 SCIE CSCD 2016年第4期527-538,共12页
The important effects of snow cover to ground thermal decades. In the most of previous research, the effects were usually regime has received much attention of scholars during the past few evaluated through the numeri... The important effects of snow cover to ground thermal decades. In the most of previous research, the effects were usually regime has received much attention of scholars during the past few evaluated through the numerical models and many important results are found. However, less examples and insufficient data based on field measurements are available to show natural cases. In the present work, a typical case study in Mohe and Beijicun meteorological stations, which both are located in the most northern tip of China, is given to show the effects of snow cover on the ground thermal regime. The spatial (the ground profile) and time series analysis in the extremely snowy winter of 2012-2013 in Heilongjiang Province are also performed by contrast with those in the winter of 2011-2012 based on the measured data collected by 63 meteorological stations, Our results illustrate the positive (warmer) effect of snow cover on the ground temperature (GT) on the daily basis, the highest difference between GT and daily mean air temperature (DGAT) is as high as 32.35℃. Moreover, by the lag time analysis method it is found that the response time of GT from 0 cm to 20 cm ground depth to the alternate change of snow depth has 10 days lag, while at 40 cm depth the response of DGAT is not significant. This result is different from the previous research by modeling, in which the resnonse denth of ground to the alteration of snow depth is far more than 40 cm. 展开更多
关键词 snow cover ground temperature lag time analysis spline mean difference between ground temperature and air temperature(DGAT)
下载PDF
Time Series Models for Short Term Prediction of the Incidence of Japanese Encephalitis in Xianyang City, P R China 被引量:3
7
作者 张荣强 李凤英 +5 位作者 刘军礼 刘美宁 罗文瑞 马婷 马波 张志刚 《Chinese Medical Sciences Journal》 CAS CSCD 2017年第3期152-160,共9页
Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference ... Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference information for JE control and prevention. Methods Theoretically epidemiologic study was employed in the research process. Monthly incidence data on JE for the period from Jan 2005 to Sep 2014 were obtained from a passive surveillance system at the Center for Diseases Prevention and Control in Xianyang, Shaanxi province. An optimal SARIMA model was developed for JE incidence from 2005 to 2013 with the Box and Jenkins approach. This SARIMA model could predict JE incidence for the year 2014 and 2015. Results SARIMA (1, 1, 1) (2, 1, 1)12 was considered to be the best model with the lowest Bayesian information criterion, Akaike information criterion, Mean Absolute Error values, the highest R2, and a lower Mean Absolute Percent Error. SARIMA (1, 1, 1) (2, 1, 1)12 was stationary and accurate for predicting JE incidence in Xianyang. The predicted incidence, around 0.3/100 000 from June to August in 2014 with low errors, was higher compared with the actual incidence. Therefore, SARIMA (1, 1, 1) (2, 1, 1)12 appeared to be reliable and accurate and could be applied to incidence prediction. Conclusions The proposed prediction model could provide clues to early identification of the JE incidence that is increased abnormally (≥0.4/100 000). According to the predicted results in 2014, the JE incidence in Xianyang will decline slightly and reach its peak from June to August.The authors wish to thank the staff from the CDCs from 13 counties of Xianyang, Shaanxi province, China, for their contribution to Japanese encephalitis cases reporting. 展开更多
关键词 Japanese encephalitis time series models INCIDENCE PREDICTION
下载PDF
Rainfall Forecasting Using Fourier Series
8
作者 Nasser Rostam Afshar Hedayat Fahmi 《Journal of Civil Engineering and Architecture》 2012年第9期1258-1262,共5页
The need for accurate rainfall prediction is readily apparent when considering many benefits in which such information would provide for river control, reservoir operation, forestry interests, flood mitigation, etc.. ... The need for accurate rainfall prediction is readily apparent when considering many benefits in which such information would provide for river control, reservoir operation, forestry interests, flood mitigation, etc.. Due to importance of rainfall in many aspects, studies on rainfall forecast have been conducted since a few decades ago. Although many methods have been introduced, all the researches describe the study as complex because it involves numerous variables and still need to be improved. Nowadays, there are various traditional techniques and mathematical models available, yet, there are no result on which method provide the most reliable estimation. AR (auto-regressive), ARMA (auto-regressive moving average), ARIMA (auto-regressive integrated moving average) and ANNs (artificial neural networks) were introduced as a useful and efficient tool for modeling and forecasting. The conventional time series provide reasonable accuracy but suffer from the assumptions of stationary and linearity. The concept of neurons was introduced first which then developed to ANNs with back propagation training algorithm. Although certain ANNs) models are equivalent to time series model, but it is limited to short term forecasting. This Paper presents a mathematical approach for rainfall forecasting for Iran on monthly basic. The model is trained for monthly rainfall forecasting and tested to evaluate the performance of the model. The result Shows reasonably good accuracy for monthly rainfall forecasting. 展开更多
关键词 RAINFALL forecasting Fourier series MAXIMUM 1 st year mean and minimum rainfall.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部