针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首...针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首先,提出基于各项出现位置与项重复关系数组的CSP(Calculation Support of Pattern)算法计算模式支持度,从而实现模式平均效用的快速计算;其次,采用项集扩展和序列扩展生成候选模式,并提出了最大平均效用上界,基于该上界实现对候选模式的有效剪枝。在5个真实数据集和1个合成数据集上的实验结果表明,相较于TOUP-dfs和HAOP-ms算法,TOUP算法的候选模式数分别降低了38.5%~99.8%和0.9%~77.6%;运行时间分别降低了33.6%~97.1%和57.9%~97.2%。TOUP的算法性能更优,能更高效地挖掘用户感兴趣的模式。展开更多
间隙约束的序列模式挖掘是一种特殊形式的序列模式挖掘方法,该方法能够揭示一定间隔下的频繁出现(发生)的子序列。但当前间隙约束的序列模式挖掘方法只关注正序列模式的挖掘,忽略了事件中的缺失行为。为解决该问题,探索了周期间隙约束...间隙约束的序列模式挖掘是一种特殊形式的序列模式挖掘方法,该方法能够揭示一定间隔下的频繁出现(发生)的子序列。但当前间隙约束的序列模式挖掘方法只关注正序列模式的挖掘,忽略了事件中的缺失行为。为解决该问题,探索了周期间隙约束的负序列模式(Negative Sequential Pattern with Periodic Gap Constraints,NSPG)挖掘方法,该方法能够更灵活地反映元素与元素之间的关系。为高效求解NSPG挖掘问题,提出了NSPG-INtree(Incomplete Nettrees)算法,该算法主要包括两个步骤:候选模式生成和支持度计算。在候选模式生成方面,为了减少候选模式的数量,该算法采用模式连接策略;在支持度计算方面,为了提高模式支持度计算效率并减少空间消耗,该算法采用不完整网树结构计算模式支持度。实验结果表明,NSPG-INtree算法不仅具有较高的挖掘效率,而且能同时挖掘间隙约束的正序列模式和负序列模式。与其他间隙约束的序列模式挖掘算法相比,NSPG-INtree能够多发现209%~352%的模式;与不同策略的对比算法相比,NSPG-INtree能够缩短6%~38%的运行时间。展开更多
由于序列模式挖掘需要花费大量计算时间,并需要占用大量存储空间.减少计算量、节省存储空间开销成为序列模式挖掘的关键.因PrefixSpan算法不产生候选,而适当应用Bitmap数据结构可避免重复扫描数据库,基于此,本文提出了BM-PrefixSpan算法...由于序列模式挖掘需要花费大量计算时间,并需要占用大量存储空间.减少计算量、节省存储空间开销成为序列模式挖掘的关键.因PrefixSpan算法不产生候选,而适当应用Bitmap数据结构可避免重复扫描数据库,基于此,本文提出了BM-PrefixSpan算法,用于序列模式挖掘,设计并构造了PFPBM(Prefix of First Position on BitMap)表用于记录序列中的每个项在位图中第1次出现的位置.实验结果表明,BM-PrefixSpan算法综合了PrefixSpan和SPAM算法的优点,能够更快、更好地挖掘出序列模式.展开更多
文摘针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首先,提出基于各项出现位置与项重复关系数组的CSP(Calculation Support of Pattern)算法计算模式支持度,从而实现模式平均效用的快速计算;其次,采用项集扩展和序列扩展生成候选模式,并提出了最大平均效用上界,基于该上界实现对候选模式的有效剪枝。在5个真实数据集和1个合成数据集上的实验结果表明,相较于TOUP-dfs和HAOP-ms算法,TOUP算法的候选模式数分别降低了38.5%~99.8%和0.9%~77.6%;运行时间分别降低了33.6%~97.1%和57.9%~97.2%。TOUP的算法性能更优,能更高效地挖掘用户感兴趣的模式。
文摘间隙约束的序列模式挖掘是一种特殊形式的序列模式挖掘方法,该方法能够揭示一定间隔下的频繁出现(发生)的子序列。但当前间隙约束的序列模式挖掘方法只关注正序列模式的挖掘,忽略了事件中的缺失行为。为解决该问题,探索了周期间隙约束的负序列模式(Negative Sequential Pattern with Periodic Gap Constraints,NSPG)挖掘方法,该方法能够更灵活地反映元素与元素之间的关系。为高效求解NSPG挖掘问题,提出了NSPG-INtree(Incomplete Nettrees)算法,该算法主要包括两个步骤:候选模式生成和支持度计算。在候选模式生成方面,为了减少候选模式的数量,该算法采用模式连接策略;在支持度计算方面,为了提高模式支持度计算效率并减少空间消耗,该算法采用不完整网树结构计算模式支持度。实验结果表明,NSPG-INtree算法不仅具有较高的挖掘效率,而且能同时挖掘间隙约束的正序列模式和负序列模式。与其他间隙约束的序列模式挖掘算法相比,NSPG-INtree能够多发现209%~352%的模式;与不同策略的对比算法相比,NSPG-INtree能够缩短6%~38%的运行时间。
文摘由于序列模式挖掘需要花费大量计算时间,并需要占用大量存储空间.减少计算量、节省存储空间开销成为序列模式挖掘的关键.因PrefixSpan算法不产生候选,而适当应用Bitmap数据结构可避免重复扫描数据库,基于此,本文提出了BM-PrefixSpan算法,用于序列模式挖掘,设计并构造了PFPBM(Prefix of First Position on BitMap)表用于记录序列中的每个项在位图中第1次出现的位置.实验结果表明,BM-PrefixSpan算法综合了PrefixSpan和SPAM算法的优点,能够更快、更好地挖掘出序列模式.