期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于序列视差图像的全息立体显示方法 被引量:3
1
作者 柴晓冬 韦穗 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第3期289-291,共3页
通过获取的序列视差图像 ,用计算全息与图像处理技术产生了一个全息立体图的显示 .在计算全息中采用了基于衍射的光栅条纹生成方法 ,将视场分为连续的 8个区域 ,每个区域由一个空间频率不同的基本条纹衍射生成 ,利用迭代算法计算了基本... 通过获取的序列视差图像 ,用计算全息与图像处理技术产生了一个全息立体图的显示 .在计算全息中采用了基于衍射的光栅条纹生成方法 ,将视场分为连续的 8个区域 ,每个区域由一个空间频率不同的基本条纹衍射生成 ,利用迭代算法计算了基本条纹函数 .然后对序列视差图像经过二维离散处理 ,通过光场投影与几何光学成像法 ,转换到一张全息图上 ,由包含 8个基本条纹的全息素衍射生成序列视差全息图像 .从而使观察者获得三维感的立体图像 ,并给出了实验结果 . 展开更多
关键词 序列视差图像 全息立体图 全息条纹
下载PDF
Length-Based Vehicle Classification in Multi-lane Traffic Flow 被引量:1
2
作者 于洋 于明 +1 位作者 阎刚 翟艳东 《Transactions of Tianjin University》 EI CAS 2011年第5期362-368,共7页
For the realtime classification of moving vehicles in the multi-lane traffic video sequences, a length-based method is proposed. To extract the moving regions of interest, the difference image between the updated back... For the realtime classification of moving vehicles in the multi-lane traffic video sequences, a length-based method is proposed. To extract the moving regions of interest, the difference image between the updated background and current frame is obtained by using background subtraction, and then an edge-based shadow removal algorithm is implemented. Moreover, a tbresholding segmentation method for the region detection of moving vehicle based on lo- cation search is developed. At the estimation stage, a registration line is set up in the detection area, then the vehicle length is estimated with the horizontal projection technique as soon as the vehicle leaves the registration line. Lastly, the vehicle is classified according to its length and the classification threshold. The proposed method is different from traditional methods that require complex camera calibrations. It calculates the pixel-based vehicle length by using uncalibrated traffic video sequences at lower computational cost. Furthermore, only one registration line is set up, which has high flexibility. Experimental results of three traffic video sequences show that the classification accuracies for the large and small vehicles are 97.1% and 96.7% respectively, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 image processing background subtraction vehicle classification virtual line horizontal projection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部