传统的雷达高分辨距离像(High Resolution Range Profile,HRRP)序列识别方法依赖于人工提取特征,并且在使用现有的经典深度学习方法识别小数据集时存在梯度消失和过拟合问题,导致收敛速度慢,识别率低。针对上述问题,提出了一种基于注意...传统的雷达高分辨距离像(High Resolution Range Profile,HRRP)序列识别方法依赖于人工提取特征,并且在使用现有的经典深度学习方法识别小数据集时存在梯度消失和过拟合问题,导致收敛速度慢,识别率低。针对上述问题,提出了一种基于注意力机制的集成Inception网络模型,通过集成Attention-Inception单分支网络,实现了HRRP序列更深层次特征的提取;通过对模型的损失函数加入L2正则化,缓解小数据集在集成网络中的过拟合问题;利用Inception Ⅰ和Inception Ⅱ结构提取HRRP序列多尺度特征,并引入注意力机制计算特征序列的分配权重;加入残差结构,减缓了集成网络梯度消失问题。在预处理后的HRRP序列上进行实验结果表明,所提方法的目标识别率达到93.3%,并且与未去除噪声的HRRP序列相比目标识别率提高了14.67%。展开更多
传统的雷达高分辨距离像(high resolution range profile,HRRP)序列识别方法依赖于人工特征提取,并且现有的深度学习方法存在梯度消失问题,导致收敛速度慢,识别精度低。针对上述问题,提出一种基于注意力机制的堆叠长短时记忆(attention-...传统的雷达高分辨距离像(high resolution range profile,HRRP)序列识别方法依赖于人工特征提取,并且现有的深度学习方法存在梯度消失问题,导致收敛速度慢,识别精度低。针对上述问题,提出一种基于注意力机制的堆叠长短时记忆(attention-based stacked long short-term memory,Attention-SLSTM)网络模型,该模型通过堆叠多个长短时记忆(long short-term memory,LSTM)网络层,实现了HRRP序列更深层次抽象特征的提取;通过替换模型的激活函数,减缓了堆叠LSTM(stacked LSTM,SLSTM)模型梯度消失问题;引入注意力机制计算特征序列的分配权重并用于分类识别步骤,增强了隐藏层特征的非线性表达能力。模型在雷达目标识别标准数据集MSTAR上多种不同目的的实验结果表明,所提方法具有更快的收敛速度和更好的识别性能,与多种现有方法对比具有更高的识别率,证明了所提方法的正确性和有效性。展开更多
雷达目标识别是弹道防御阶段的关键环节,为节约雷达时间资源和降低对计算机处理能力的要求,需研究低数据率雷达回波信号的弹道中段目标识别方法,本文以低数据率目标高分辨一维距离像序列(High Resolution Range Profile,HRRP)为研究对象...雷达目标识别是弹道防御阶段的关键环节,为节约雷达时间资源和降低对计算机处理能力的要求,需研究低数据率雷达回波信号的弹道中段目标识别方法,本文以低数据率目标高分辨一维距离像序列(High Resolution Range Profile,HRRP)为研究对象,提出了基于图像投影法的进动频率特征提取算法和基于特征级融合的弹道中段目标识别方法,解决了由于HRRP回波序列数据率过低而导致的时频曲线周期模糊和单一特征造成目标识别准确率浮动大的问题。本文通过仿真弹道导弹中段飞行场景中弹头、重诱饵、轻诱饵、碎片目标的特性数据,同时考虑目标尺寸、形状和微运动模型等差异,结合仿真数据对本文所提算法进行验证。实验结果表明在低数据率(10~100 Hz)下,HRRP序列利用本文算法提取的进动频率特征结果误差值小于0.05 Hz,具有较高准确性和稳定性,通过特征融合方法联合进动频率和目标结构特征将弹道中段目标的识别准确率提升到了96%以上且趋于稳定。展开更多