An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algor...An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.展开更多
Exactly capturing three dimensional (3D) motion i nf ormation of an object is an essential and important task in computer vision, and is also one of the most difficult problems. In this paper, a binocular vision s yst...Exactly capturing three dimensional (3D) motion i nf ormation of an object is an essential and important task in computer vision, and is also one of the most difficult problems. In this paper, a binocular vision s ystem and a method for determining 3D motion parameters of an object from binocu lar sequence images are introduced. The main steps include camera calibration, t he matching of motion and stereo images, 3D feature point correspondences and re solving the motion parameters. Finally, the experimental results of acquiring th e motion parameters of the objects with uniform velocity and acceleration in the straight line based on the real binocular sequence images by the mentioned meth od are presented.展开更多
Background: To understand an effective golf swing, both swing speed and impact precision must be thoroughly and simultaneously examined. The aim of this study was to perform both swing speed test and impact precision...Background: To understand an effective golf swing, both swing speed and impact precision must be thoroughly and simultaneously examined. The aim of this study was to perform both swing speed test and impact precision test to ascertain what swing type determines an effective impact. Methods: Seven golfers from a college team (handicap: 0--12) were recruited to complete a swing speed test and impact precision test using a 5-iron club, A force plate and electromyography (EMG) system were used to collect data in the swing speed test to compare the difference between two motion sequences. High speed video cameras were used to determine the displacement of rotation center for impact precision test. Results: The results showed a significant difference (p 〈 0.01) in clubhead speed with different motion sequences and muscle contraction patterns. In the impact precision test, the displacement of the rotation center which defined as the inner center point of the C7 was significantly different (p 〈 0.05) between different ball impacted marks on club face. Conclusion: The vertical peak ground reaction force on left foot occurring before impact and the left latissimus dorsi contracting prior to the right pectoralis major represent a superior skill by allowing the club to strike the ball with normal collision at a faster speed.展开更多
Image sequences processing and video encoding are extremely time consuming problems. The time complexity of them depends on image contents. This paper presents an estimation of a block motion method for video coding w...Image sequences processing and video encoding are extremely time consuming problems. The time complexity of them depends on image contents. This paper presents an estimation of a block motion method for video coding with edge alignment. This method uses blocks of size 4 × 4 and its basic idea is to find motion vector using the edge position in each video coding block. The method finds the motion vectors more accurately and faster than any known classical method that calculates all the possibilities. Our presented algorithm is compared with known classical algorithms using the evaluation function of the peak signal-to-noise ratio. For comparison of the methods we are using parameters such as time, CPU usage, and size of compressed data. The comparison is made on benchmark data in color format YUV. Results of our proposed method are comparable and in some cases better than results of standard classical algorithms.展开更多
文摘An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.
文摘Exactly capturing three dimensional (3D) motion i nf ormation of an object is an essential and important task in computer vision, and is also one of the most difficult problems. In this paper, a binocular vision s ystem and a method for determining 3D motion parameters of an object from binocu lar sequence images are introduced. The main steps include camera calibration, t he matching of motion and stereo images, 3D feature point correspondences and re solving the motion parameters. Finally, the experimental results of acquiring th e motion parameters of the objects with uniform velocity and acceleration in the straight line based on the real binocular sequence images by the mentioned meth od are presented.
文摘Background: To understand an effective golf swing, both swing speed and impact precision must be thoroughly and simultaneously examined. The aim of this study was to perform both swing speed test and impact precision test to ascertain what swing type determines an effective impact. Methods: Seven golfers from a college team (handicap: 0--12) were recruited to complete a swing speed test and impact precision test using a 5-iron club, A force plate and electromyography (EMG) system were used to collect data in the swing speed test to compare the difference between two motion sequences. High speed video cameras were used to determine the displacement of rotation center for impact precision test. Results: The results showed a significant difference (p 〈 0.01) in clubhead speed with different motion sequences and muscle contraction patterns. In the impact precision test, the displacement of the rotation center which defined as the inner center point of the C7 was significantly different (p 〈 0.05) between different ball impacted marks on club face. Conclusion: The vertical peak ground reaction force on left foot occurring before impact and the left latissimus dorsi contracting prior to the right pectoralis major represent a superior skill by allowing the club to strike the ball with normal collision at a faster speed.
文摘Image sequences processing and video encoding are extremely time consuming problems. The time complexity of them depends on image contents. This paper presents an estimation of a block motion method for video coding with edge alignment. This method uses blocks of size 4 × 4 and its basic idea is to find motion vector using the edge position in each video coding block. The method finds the motion vectors more accurately and faster than any known classical method that calculates all the possibilities. Our presented algorithm is compared with known classical algorithms using the evaluation function of the peak signal-to-noise ratio. For comparison of the methods we are using parameters such as time, CPU usage, and size of compressed data. The comparison is made on benchmark data in color format YUV. Results of our proposed method are comparable and in some cases better than results of standard classical algorithms.