伴随着新能源产业的飞速发展,锂离子动力电池作为一种高效的储能方式,已成为电动汽车的重要组成部分。在电池管理系统的功能中,电池的高精度建模至关重要。在实际应用中,电池不是一个线性系统,其输入和输出由于外部扰动等原因表现出非...伴随着新能源产业的飞速发展,锂离子动力电池作为一种高效的储能方式,已成为电动汽车的重要组成部分。在电池管理系统的功能中,电池的高精度建模至关重要。在实际应用中,电池不是一个线性系统,其输入和输出由于外部扰动等原因表现出非线性特征,从而直接影响参数识别效果,进而影响模型精度。鉴于此,本文对锂离子动力电池进行了Hammerstein-ARMAX(Autoregressive MovingAverage with Extra Input)模型构建,并对模型参数的估计方法进行研究,旨在提高模型的准确性。实验结果表明了该方法的有效性。展开更多
为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预...为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预测方法。该方法利用CEEMDAN处理涌水量数据,构建麻雀搜索算法(SSA)优化的长短期记忆网络(LSTM)和自回归移动平均模型(ARIMA)并行级联而成的混合时间序列模型对工作面涌水量进行预测。研究结果表明:该模型预测结果与真实数据相差更小,平均绝对误差为6.36 m 3/h,均方根误差为10.6 m 3/h,模型拟合系数为0.95,更适用于工作面涌水量预测。研究结果可为矿井工作面涌水量预测及防控提供参考。展开更多
基于使用智能插座对电路中的电流高频次监测、获得用户用电态势数据,对电流迁移态序列、电流迁移态序列特征的一元回归模型进行了研究.基于电流稳态序列ε片段、电流稳态序列片段,设计了电流迁移态序列的构造方法,提出使用一元回归模型...基于使用智能插座对电路中的电流高频次监测、获得用户用电态势数据,对电流迁移态序列、电流迁移态序列特征的一元回归模型进行了研究.基于电流稳态序列ε片段、电流稳态序列片段,设计了电流迁移态序列的构造方法,提出使用一元回归模型描述每一个电流迁移态序列,实现将长度不定的电流迁移态序列到维数固定的电流迁移态序列特征空间的映射.进一步,设计了基于微环境的粒子群优化算法(Microenvironment based Particle Swarm Optimization,MPSO),实现了电流迁移态序列一元回归特征的优化.实验表明:使用所提电流迁移态序列特征进行电器状态识别,平均可以达到97.93%的准确率,且相较PSO算法与CAPSO算法,MPSO算法在使用较少的粒子数达到与这两种算法一致精度的同时,使用时间显著降低.展开更多
文摘伴随着新能源产业的飞速发展,锂离子动力电池作为一种高效的储能方式,已成为电动汽车的重要组成部分。在电池管理系统的功能中,电池的高精度建模至关重要。在实际应用中,电池不是一个线性系统,其输入和输出由于外部扰动等原因表现出非线性特征,从而直接影响参数识别效果,进而影响模型精度。鉴于此,本文对锂离子动力电池进行了Hammerstein-ARMAX(Autoregressive MovingAverage with Extra Input)模型构建,并对模型参数的估计方法进行研究,旨在提高模型的准确性。实验结果表明了该方法的有效性。
文摘为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预测方法。该方法利用CEEMDAN处理涌水量数据,构建麻雀搜索算法(SSA)优化的长短期记忆网络(LSTM)和自回归移动平均模型(ARIMA)并行级联而成的混合时间序列模型对工作面涌水量进行预测。研究结果表明:该模型预测结果与真实数据相差更小,平均绝对误差为6.36 m 3/h,均方根误差为10.6 m 3/h,模型拟合系数为0.95,更适用于工作面涌水量预测。研究结果可为矿井工作面涌水量预测及防控提供参考。
文摘基于使用智能插座对电路中的电流高频次监测、获得用户用电态势数据,对电流迁移态序列、电流迁移态序列特征的一元回归模型进行了研究.基于电流稳态序列ε片段、电流稳态序列片段,设计了电流迁移态序列的构造方法,提出使用一元回归模型描述每一个电流迁移态序列,实现将长度不定的电流迁移态序列到维数固定的电流迁移态序列特征空间的映射.进一步,设计了基于微环境的粒子群优化算法(Microenvironment based Particle Swarm Optimization,MPSO),实现了电流迁移态序列一元回归特征的优化.实验表明:使用所提电流迁移态序列特征进行电器状态识别,平均可以达到97.93%的准确率,且相较PSO算法与CAPSO算法,MPSO算法在使用较少的粒子数达到与这两种算法一致精度的同时,使用时间显著降低.