Detrended fluctuation analysis (DFA) is fit for studies on the long-range exponential correlation of non-stationary time serial. In this paper, in order to find a hy- poxia adaptability evaluation criterion, the hea...Detrended fluctuation analysis (DFA) is fit for studies on the long-range exponential correlation of non-stationary time serial. In this paper, in order to find a hy- poxia adaptability evaluation criterion, the heart rate and SaO2 signals are analyzed by this method. The demarcate exponent about fit-good-group and fit-bad-group in hy- poxia and normal air are calculated and compared. The result shows a is different in different situation, the α in hypoxia is much higher than α of breath in normal air. And α of fit-good-group is higher than fit-bad-group. It shows that DFA could be a good criterion to analyze hypoxia adaptability, which is useful in the analysis of hypoxia phys- iology signal.展开更多
文摘Detrended fluctuation analysis (DFA) is fit for studies on the long-range exponential correlation of non-stationary time serial. In this paper, in order to find a hy- poxia adaptability evaluation criterion, the heart rate and SaO2 signals are analyzed by this method. The demarcate exponent about fit-good-group and fit-bad-group in hy- poxia and normal air are calculated and compared. The result shows a is different in different situation, the α in hypoxia is much higher than α of breath in normal air. And α of fit-good-group is higher than fit-bad-group. It shows that DFA could be a good criterion to analyze hypoxia adaptability, which is useful in the analysis of hypoxia phys- iology signal.