期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
多面体逼近在保序回归问题中的应用
1
作者 华一明 叶斐斐 许树声 《江南大学学报(自然科学版)》 CAS 2009年第1期118-121,共4页
研究了多面体最佳逼近算法在保序回归中的应用。对于多种广义保序回归及多维保序回归问题的求解,给出了较已往便捷精确的算法;并解决了含两个独立变量的保序回归的算法问题。
关键词 多面体 最佳逼近 序回归 广义保序回归 多维保序回归 算法
下载PDF
基于保序回归估计的最大耐受剂量确定方法 被引量:3
2
作者 王雪丽 张忠占 +1 位作者 陶剑 史宁中 《应用概率统计》 CSCD 北大核心 2008年第5期522-530,共9页
I期临床试验研究的主要目标之一是评估药物在不同剂量水平下的毒性,并且建议一个对病人既安全又有效的剂量,即最大耐受剂量(MTD).本文针对拓展的up-and-down设计,进一步给出其基于保序回归估计的最大耐受剂量确定方法.经大量模拟,结果表... I期临床试验研究的主要目标之一是评估药物在不同剂量水平下的毒性,并且建议一个对病人既安全又有效的剂量,即最大耐受剂量(MTD).本文针对拓展的up-and-down设计,进一步给出其基于保序回归估计的最大耐受剂量确定方法.经大量模拟,结果表明:基于保序回归估计的最大耐受剂量确定方法对推荐MTD的准确性和精确度,以及保护病人,防止病人暴露在较高毒性剂量水平下方面实现了有意义的改善. 展开更多
关键词 Ⅰ期临床试验 毒性研究 最大耐受剂量(MTD) 序回归.
下载PDF
不确定性序回归模型在普通高校扩招预警中的应用
3
作者 郝永胜 黄凯 褚庆军 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第S1期362-365,共4页
根据专家决策和结构风险最小化原则,构建了一种新的不确定性有序支持向量回归模型,可以解决训练点带有不确定性的序回归问题。基于OSVR首先构建了一个较为复杂的优化模型;该模型的约束条件比较多,特别是在海量数据的情况下处理起来就更... 根据专家决策和结构风险最小化原则,构建了一种新的不确定性有序支持向量回归模型,可以解决训练点带有不确定性的序回归问题。基于OSVR首先构建了一个较为复杂的优化模型;该模型的约束条件比较多,特别是在海量数据的情况下处理起来就更为麻烦,提出一个等价优化问题,并进行了由自然数到实数的推广,将复杂的模型转换为一个相对简单的优化模型;然后利用技巧将线性学习问题很自然地拓广到非线性情况,实现了从训练样本空间到高维特征空间的映射。普通高校招生人数预警的数据试验表明模型有一定的实际应用价值。 展开更多
关键词 序回归 不确定性 普通高校招生
下载PDF
序回归的特点及对预测应用的影响
4
作者 秦卫平 《四川地震》 1994年第1期5-8,共4页
用{Y_K}K=1,2,…,n表示量Y的巳有记载,当Y_K与K相关较强时,有些文章中就由Y关于序号K的回归方程,取作为Y在下一步的预测或预测的过渡值。本文对这种按顺序回归的回归系数进行剖析,得知:n稍大时,前期与中期... 用{Y_K}K=1,2,…,n表示量Y的巳有记载,当Y_K与K相关较强时,有些文章中就由Y关于序号K的回归方程,取作为Y在下一步的预测或预测的过渡值。本文对这种按顺序回归的回归系数进行剖析,得知:n稍大时,前期与中期的数据Y_K在序回归中起主要作用,代表新近信息的后期Y_K作用甚小,因而回归值在尾端与实际值有较大偏离。加之,系数b只是增量Y_K-Y_(K-1)的一种加权平均,以b为步长外延未能刻划Y_(n+1)-Y_n的起伏,故地震预测中应用序回归难有良好实效。 展开更多
关键词 序回归 回归方程 地震预测 地震
下载PDF
k=2时多维保序回归
5
作者 卢玉贞 董普 《大连海事大学学报》 CAS CSCD 2000年第1期96-99,共4页
扩展了 Shi中的定理 ,并利用它以及 Shi and Geng的算法给出 k=2时多维保序回归的一个求解方法 。
关键词 简单半 多维保序回归 算法
原文传递
宫颈糜烂影响因素的多序类回归分析 被引量:4
6
作者 陈会波 刘洪庆 +3 位作者 李会庆 郑薇 郑国华 黄克锋 《山东大学学报(医学版)》 CAS 北大核心 2006年第8期778-780,784,共4页
目的:分析宫颈糜烂的影响因素。方法:采用分层整群随机抽样调查搜集资料,采用多序类回归分析筛选影响因素。结果:宫颈糜烂Ⅰ度、Ⅱ度和Ⅲ度的患病率分别为12.47%,7.95%,3.70%,其影响因素为年龄、全年洗澡次数、人工流产次数、房事卫生... 目的:分析宫颈糜烂的影响因素。方法:采用分层整群随机抽样调查搜集资料,采用多序类回归分析筛选影响因素。结果:宫颈糜烂Ⅰ度、Ⅱ度和Ⅲ度的患病率分别为12.47%,7.95%,3.70%,其影响因素为年龄、全年洗澡次数、人工流产次数、房事卫生、解脲支原体感染。结论:为有效预防宫颈糜烂,应尽可能避免人工流产,养成良好的个人卫生习惯,并及早发现和治疗生殖道病原体感染。 展开更多
关键词 宫颈糜烂 影响因素 回归
下载PDF
IIR自适应序贯回归算法的限制条件 被引量:1
7
作者 阮传概 杨嘉 杨大力 《信号处理》 CSCD 北大核心 1993年第2期111-114,共4页
本文作为对序贯回归(SER)算法的补充,针对IIR自适应序贯回归算法中相关矩阵逆的存在性进行讨论和分析,通过严格的数学证明给出IIR自适应的SER算法的限制条件.
关键词 自适应 滤波器 回归 算法
下载PDF
异方差回归—时序模型 被引量:2
8
作者 马小兵 傅惠民 《机械强度》 EI CAS CSCD 北大核心 2006年第1期51-54,共4页
提出一种异方差回归—时序模型,通过建立回归分析残差的标准差自回归方程,给出回归系数、自回归系数和滑动平均系数的最小二乘估计和极大似然估计。该模型能够在小样本情况下充分发挥回归分析和时间序列各自的优点,对回归模型的残差项... 提出一种异方差回归—时序模型,通过建立回归分析残差的标准差自回归方程,给出回归系数、自回归系数和滑动平均系数的最小二乘估计和极大似然估计。该模型能够在小样本情况下充分发挥回归分析和时间序列各自的优点,对回归模型的残差项进行有效补偿,提高回归分析的精度。文中对回归模型残差相互独立和自相关两种情况分别进行讨论。大量计算表明,该方法具有较高的分析和预测精度。 展开更多
关键词 回归分析 时间 异方差 回归一时模型 小样本
下载PDF
基于序贯岭回归背景抑制的目标检测算法 被引量:1
9
作者 胡谋法 沈燕 陈曾平 《光电工程》 EI CAS CSCD 北大核心 2007年第2期11-14,21,共5页
复杂背景下的弱小目标检测是空间监视和远程预警中的关键技术之一。针对这一难点问题,提出了一种新的基于自适应序贯岭回归背景抑制算法的目标检测算法。首先,利用岭回归估计原理,建立了自适应序贯岭回归估计算法。然后,利用图像背景空... 复杂背景下的弱小目标检测是空间监视和远程预警中的关键技术之一。针对这一难点问题,提出了一种新的基于自适应序贯岭回归背景抑制算法的目标检测算法。首先,利用岭回归估计原理,建立了自适应序贯岭回归估计算法。然后,利用图像背景空间域的相关性建立了基于序贯岭回归的图像背景抑制算法,并采用双向扫描更新方式加快算法收敛速度。该抑制算法能根据像素邻域灰度自适应调整加权参数。最后,在该抑制算法基础上,结合阈值化技术形成了一种新的弱小目标检测方法。实验证明,该算法能增强目标信噪比和对比度,有效检测到信噪比大于2的弱小目标。 展开更多
关键词 背景抑制 目标检测 贯岭回归估计 阈值化
下载PDF
基于序贯回归算法的格型结构谱线增强 被引量:1
10
作者 吕小纳 《信息与电脑》 2020年第6期53-57,共5页
谱线增强在信号处理领域有着广泛的应用,当信号混叠有宽频带干扰时,谱线增强的意义很突出。笔者重点研究了格型结构系统中序贯回归算法(SER)现实的谱线增强,并推导了格型结构系统的序贯回归算法表达式,验证了序贯回归算法的收敛过程,同... 谱线增强在信号处理领域有着广泛的应用,当信号混叠有宽频带干扰时,谱线增强的意义很突出。笔者重点研究了格型结构系统中序贯回归算法(SER)现实的谱线增强,并推导了格型结构系统的序贯回归算法表达式,验证了序贯回归算法的收敛过程,同时使用格型结构对单频率和双频率截断后的信号进行谱线增强,可以明显看出谱线增强对有效信号有明显增强。 展开更多
关键词 谱线增强 格型结构 回归算法
下载PDF
基于滑动自回归系统序贯回归算法的系统辨识
11
作者 吕小纳 《电脑知识与技术》 2020年第16期200-202,共3页
系统辨识也即系统建模,本文主要研究在滑动自回归系统中使用序贯回归算法(SER)现实系统辨识。该文推导了滑动自回归系统中各级参数的序贯回归算法表达式,并验证了二阶系统的序贯回归算法的迭代过程。同时也验证了高阶滑动平均系统中算... 系统辨识也即系统建模,本文主要研究在滑动自回归系统中使用序贯回归算法(SER)现实系统辨识。该文推导了滑动自回归系统中各级参数的序贯回归算法表达式,并验证了二阶系统的序贯回归算法的迭代过程。同时也验证了高阶滑动平均系统中算法的应用及准确性验证。通过验证可以得到序贯回归算法(SER)对滑动自回归系统能达到较高的辨识度。 展开更多
关键词 回归算法 滑动自回归系统 系统辨识
下载PDF
两个多面体之交上的最佳逼近与保凸回归问题 被引量:1
12
作者 华一明 许树声 《应用概率统计》 CSCD 北大核心 2004年第1期9-19,共11页
本文提出了一种求Hilbert空间中给定点x0在两个多面体K’与K”之交上的最佳逼近的算法,它把问题化归为有限次求点在K’与K”中的最佳逼近的问题.由于保凸回归问题可表述为求某点x0在两个锐锥之交上的最佳逼近问题,故结合熟知的锐锥逼近... 本文提出了一种求Hilbert空间中给定点x0在两个多面体K’与K”之交上的最佳逼近的算法,它把问题化归为有限次求点在K’与K”中的最佳逼近的问题.由于保凸回归问题可表述为求某点x0在两个锐锥之交上的最佳逼近问题,故结合熟知的锐锥逼近的PAVA算法即可得到保凸回归的有限算法.文章还计算了一个保凸回归问题的实例. 展开更多
关键词 多面体 最佳逼近 保凸回归 广义保序回归 算法
下载PDF
基于多重冗余标记CRFs的句子情感分析研究 被引量:32
13
作者 王根 赵军 《中文信息学报》 CSCD 北大核心 2007年第5期51-55,86,共6页
本文提出了一种基于多重冗余标记的CRFs并将其应用于情感分析任务。该方法不仅能够有效地解决有序标记的分类问题,还能够在保证情感分析中各子任务能够使用不同特征的前提下,将情感分析中的主客观分类、褒贬分类和褒贬强弱分类任务统一... 本文提出了一种基于多重冗余标记的CRFs并将其应用于情感分析任务。该方法不仅能够有效地解决有序标记的分类问题,还能够在保证情感分析中各子任务能够使用不同特征的前提下,将情感分析中的主客观分类、褒贬分类和褒贬强弱分类任务统一在一个模型之中,在多个子任务上寻求联合最优,制约分步完成时误差的传播。实验证明,该方法有效地提高了句子情感分析任务的准确率。在理论上,该方法也为基于最大似然训练的算法解决序回归问题提供了一条途径。 展开更多
关键词 计算机应用 中文信息处理 句子情感分析 序回归 条件随机场 冗余标记
下载PDF
居民收入主观感知状况及其影响因素测度研究——基于北京市居民微观调查数据分析 被引量:5
14
作者 陈云 李慧芸 《统计与信息论坛》 CSSCI 北大核心 2015年第1期106-112,共7页
对北京市居民收入及其主观感知状况等系列问题进行微观调查,结果显示:北京市居民家庭年收入呈右偏分布,而居民收入主观感知状况呈左偏分布,近五成居民认为自己属于低收入或贫困收入群体。运用多项定序logistic回归模型对居民收入主观感... 对北京市居民收入及其主观感知状况等系列问题进行微观调查,结果显示:北京市居民家庭年收入呈右偏分布,而居民收入主观感知状况呈左偏分布,近五成居民认为自己属于低收入或贫困收入群体。运用多项定序logistic回归模型对居民收入主观感知的影响因素进行测度,结果显示:人力资本因素能够提升居民的收入主观感知状况;劳动密集型行业居民的收入主观感知状况相对较低;收入、房产、私家车等因素是影响居民收入主观感知状况的重要客观因素;居民对宏观经济运行、收入差距问题的看法与其对收入主观感知状况之间存在联动效应。 展开更多
关键词 收入主观感知 影响因素 多项定logistic回归 微观调查
下载PDF
Modeling household car ownership using ordered logistic regression model 被引量:3
15
作者 邓一凌 过秀成 《Journal of Southeast University(English Edition)》 EI CAS 2014年第4期500-505,共6页
Considering both the discrete and ordered nature of the household car ownership an ordered logistic regression model to predict household car ownership is established by using the data of Nanjing Household Travel Surv... Considering both the discrete and ordered nature of the household car ownership an ordered logistic regression model to predict household car ownership is established by using the data of Nanjing Household Travel Survey in the year 2012. The model results show that some household characteristics such as the number of driver licenses household income and home location are significant.Yet the intersection density indicating the street patterns of home location and the dummy near the subway and the bus stop density indicating the transit accessibility of home location are insignificant.The model estimation obtains a good γ2 the goodness of fit of the model and the model validation also shows a good performance in prediction.The marginal effects of all the significant explanatory variables are calculated to quantify the odds change in the household car ownership following a one-unit change in the explanatory variables. 展开更多
关键词 household car ownership ordered logisticregression model marginal effect household characteristics neighborhood characteristics
下载PDF
Study on the Model of Excessive Staminate Catkin Thinning of Proterandrous Walnut Based on Quadratic Polynomial Regression Equation and BP Artificial Neural Network
16
作者 王贤萍 曹贵寿 +4 位作者 杨晓华 张倩茹 李凯 李鸿雁 段泽敏 《Agricultural Science & Technology》 CAS 2015年第6期1295-1300,共6页
The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quad... The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quadratic polynomial regression equation and BP artificial neural network was developed. The effects of ethephon, gibberel in and mepiquat on shedding rate of staminate catkin of pro-terandrous walnut were investigated by modeling field test. Based on the modeling test results, the excessive staminate catkin thinning model of quadratic polynomial regression equation and BP artificial neural network was established, and it was validated by field test next year. The test data were divided into training set, vali-dation set and test set. The total 20 sets of data obtained from the modeling field test were randomly divided into training set (17) and validation set (3) by central composite design (quadric rotational regression test design), and the data obtained from the next-year field test were divided into the test set. The topological struc-ture of BP artificial neural network was 3-5-1. The results showed that the pre-diction errors of BP neural network for samples from the validation set were 1.355 0%, 0.429 1% and 0.353 8%, respectively; the difference between the predicted value by the BP neural network and validated value by field test was 2.04%, and the difference between the predicted value by the regression equation and validated value by field test was 3.12%; the prediction accuracy of BP neural network was over 1.0% higher than that of regression equation. The effective combination of quadratic polynomial stepwise regression and BP artificial neural network wil not only help to determine the effect of independent parameter but also improve the prediction accuracy. 展开更多
关键词 WALNUT THINNING BP artificial neural network Regression PREDICTION
下载PDF
Multivariate time series prediction based on AR_CLSTM 被引量:2
17
作者 QIAO Gangzhu SU Rong ZHANG Hongfei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第3期322-330,共9页
Time series is a kind of data widely used in various fields such as electricity forecasting,exchange rate forecasting,and solar power generation forecasting,and therefore time series prediction is of great significanc... Time series is a kind of data widely used in various fields such as electricity forecasting,exchange rate forecasting,and solar power generation forecasting,and therefore time series prediction is of great significance.Recently,the encoder-decoder model combined with long short-term memory(LSTM)is widely used for multivariate time series prediction.However,the encoder can only encode information into fixed-length vectors,hence the performance of the model decreases rapidly as the length of the input sequence or output sequence increases.To solve this problem,we propose a combination model named AR_CLSTM based on the encoder_decoder structure and linear autoregression.The model uses a time step-based attention mechanism to enable the decoder to adaptively select past hidden states and extract useful information,and then uses convolution structure to learn the internal relationship between different dimensions of multivariate time series.In addition,AR_CLSTM combines the traditional linear autoregressive method to learn the linear relationship of the time series,so as to further reduce the error of time series prediction in the encoder_decoder structure and improve the multivariate time series Predictive effect.Experiments show that the AR_CLSTM model performs well in different time series predictions,and its root mean square error,mean square error,and average absolute error all decrease significantly. 展开更多
关键词 encoder_decoder attention mechanism CONVOLUTION autoregression model multivariate time series
下载PDF
Fitting Generalized Additive Logistic Regression Model with GAM Procedure
18
作者 Suresh Kumar Sharma Rashmi Aggarwal Kanchan Jain 《Journal of Mathematics and System Science》 2013年第9期442-453,共12页
In dealing with nonparametric regression the GAM procedure is the most versatile of several new procedures. The terminology behind this procedure is more flexible than traditional parametric modeling tools. It relaxes... In dealing with nonparametric regression the GAM procedure is the most versatile of several new procedures. The terminology behind this procedure is more flexible than traditional parametric modeling tools. It relaxes the usual assumptions of parametric model and enables us to uncover structure to establish the relationship between independent variables and dependent variable in exponential family that may not be obvious otherwise. In this paper, we discussed two methods of fitting generalized additive logistic regression model, one based on Newton Raphson method and another based on iterative weighted least square method for first and second order Taylor series expansion. The use of the GAM procedure with the specified set of weights, using local scoring algorithm, was applied to real life data sets. The cubic spline smoother is applied to the independent variables. Based on nonparametric regression and smoothing techniques, this procedure provides powerful tools for data analysis. 展开更多
关键词 Logistic model iterative generalized additive model weighted least squares cubic splines.
下载PDF
Application of Credit Scoring Models in the Analysis of Insolvency of a Brazilian Microcredit Institutio
19
作者 Charles Ulises De Montreuil Carmona Elaine Aparecida Arafijo 《Journal of Modern Accounting and Auditing》 2011年第8期799-812,共14页
Credit scoring models are quantitative models used commonly by financial institutions in the measurement and forecasting of credit risk, having a consolidated use in the process of credit concession of these instituti... Credit scoring models are quantitative models used commonly by financial institutions in the measurement and forecasting of credit risk, having a consolidated use in the process of credit concession of these institutions. The purpose of this paper was to evaluate the possibility of application of credit scoring models in a microcredit institution named Fundo Rotativo de A~~o da Cidadania--Cred Cidadania (Revolving Fund of Citizenship Action--Cred Cidadania), located in Recife (Brazil). In order to do this, data related to a sample of clients of the Cred Cidadania was collected, and this data was used to develop two types of credit scoring models: one is credit approval, another is called behavioral scoring. The statistical technique applied in the construction of the models was logistic regression. The results of the study demonstrated that the credit scoring models obtain satisfactory performance when used in the analysis of credit risk in the Cred Cidadania microcredit institution, reaching a correct client classification percentile of about 80%. The results also indicate that the use of credit scoring models supplies subsidies to the institution, aiding it in the prevention and reduction of insolvency and in the decrease of its operational costs, two problems that affect their financial sustainability. 展开更多
关键词 credit risk MICROCREDIT credit scoring
下载PDF
Accuracy Analysis on Bundle Adjustment of Remote Sensing Images Based on Dual Quaternion 被引量:1
20
作者 盛庆红 费利佳 +2 位作者 柳建锋 陈姝文 王惠南 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第5期523-529,共7页
A bundle adjustment method of remote sensing images based on dual quaternion is presented,which conducted the uniform disposal corresponding location and attitude of sequence images by the dual quaternion.The constrai... A bundle adjustment method of remote sensing images based on dual quaternion is presented,which conducted the uniform disposal corresponding location and attitude of sequence images by the dual quaternion.The constraint relationship of image itself and sequence images is constructed to compensate the systematic errors.The feasibility of this method used in bundle adjustment is theoretically tested by the analysis of the structural characteristics of error equation and normal equation based on dual quaternion.Different distributions of control points and stepwise regression analysis are introduced into the experiment for RC30 image.The results show that the adjustment accuracy can achieve 0.2min plane and 1min elevation.As a result,this method provides a new technique for geometric location problem of remote sensing images. 展开更多
关键词 photogrammetry bundle adjustment geometric correction dual quaternion geometric imaging model
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部