期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
EM对SBR工艺处理生活污水的强化作用
1
作者 孟范平 李桂芳 《中国海洋大学学报(自然科学版)》 CAS CSCD 2000年第z1期-,共6页
生物强化技术对于改善现有污水处理工艺的效果具有重要作用 。实验研究以生活污水中添加有效微生物群(EM)和单以生活污水两种方式培养活性污泥,然 后分别将其引入SBR反应器,以考察EM对SBR工艺处理生活污水的强化作用。结果表明,在正... 生物强化技术对于改善现有污水处理工艺的效果具有重要作用 。实验研究以生活污水中添加有效微生物群(EM)和单以生活污水两种方式培养活性污泥,然 后分别将其引入SBR反应器,以考察EM对SBR工艺处理生活污水的强化作用。结果表明,在正 常生活污水浓度和最优工艺条件(污水pH6~8,曝气2h,静置沉淀0.5h)下,EM-SBR反应器对 污水CODcr、NH+4-N的平均去除率分别比普通SBR工艺高19.08%和23.17%;且具有较好 的稳定性。此外,EM强化的SBR工艺还具有极强的抗冲击负荷能力,当进水CODcr为2738mg.L-1时,处理3h后,出水CODcr即可达到《污水综合排放标准》的要求,去除率高于96 %,而普通SBR工艺即使处理6h也不能达标。 展开更多
关键词 生物强化技术 生活 有效微生物群(EM) 序批式活性污 泥法(SBR) 化学需氧量(CODcr) 氨氮(NH+4-N)
下载PDF
Waste Activated Sludge Alkaline Fermentation Liquid as Carbon Source for Biological Nutrients Removal in Anaerobic Followed by Alternating Aerobic-Anoxic Sequencing Batch Reactors 被引量:18
2
作者 郑雄 陈银广 刘晨晨 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第3期478-485,共8页
Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with... Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with the activated sludge process is that large amount of waste activated sludge is produced,which needs further treatment.In this study,the waste activated sludge alkaline fermentation liquid was used as the main carbon source for phosphorus and nitrogen removal under anaerobic followed by alternating aerobic-anoxic conditions,and the results were compared with those using acetic acid as the carbon source.The use of alkaline fermentation liquid not only affected the transformations of phosphorus,nitrogen,intracellular polyhydroxyalkanoates and glycogen, but also led to higher removal efficiencies for phosphorus and nitrogen compared with acetic acid.It was observed that ammonium was completely removed with either alkaline fermentation liquid or acetic acid as the carbon source. However,the former resulted in higher removal efficiencies for phosphorus(95%)and nitrogen(82%),while the latter showed lower ones(87%and 74%,respectively).The presence of a large amount of propionic acid in the alkaline fermentation liquid was one possible reason for its higher phosphorus removal efficiency.Exogenous instead of endogenous denitrification was the main pathway for nitrogen removal with the alkaline fermentation liquid as the carbon source,which was responsible for its higher nitrogen removal efficiency.It seems that the alkaline fermentation liquid can replace acetic acid as the carbon source for phosphorus and nitrogen removal in anaerobic fol- lowed by alternating aerobic-anoxic sequencing batch reactor. 展开更多
关键词 nutrients removal alkaline fermentation liquid waste activated sludge endogenous denitrification carbon source
下载PDF
Comparison of heavy metal removal efficiencies in four activated sludge processes 被引量:3
3
作者 杨军 高定 +3 位作者 陈同斌 雷梅 郑国砥 周小勇 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3788-3794,共7页
The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. S... The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. Significant differences of heavy metal removal efficiencies were observed among four activated sludge processes. The removal efficiency for As(75.5%) in the oxidation ditch(OD) process is significantly higher than that in the conventional activated sludge(CAS) process(38.6%) or sequencing batch reactor(SBR) process(51.4%). The mean removal efficiencies for Cu and Ni in the OD process are 90.5% and 46.7%, respectively, while low mean removal efficiencies are observed for Cu(69.9%) and Ni(16.5%), respectively, in the SBR process. The removal efficiencies for Cu and Ni in the OD process are significantly higher than those in the anaerobic-anoxic-oxic(A2-O) process. These results highlight the differences of removal efficiencies for heavy metals in different processes and should be considered when selecting a wastewater treatment process. 展开更多
关键词 WASTEWATER heavy metal removal efficiency treatment process activated sludge processes
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部