期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
改进在线贯序极限学习机在模式识别中的应用 被引量:13
1
作者 尹刚 张英堂 +1 位作者 李志宁 范红波 《计算机工程》 CAS CSCD 2012年第8期164-166,169,共4页
针对传统在线贯序极限学习机存在的过学习和分类器输出不稳定等问题,将结构风险最小化理论引入到极限学习机中,用小波函数替代原有的隐层激励函数构建正则小波极限学习机,并与在线学习方法结合,提出在线正则小波极限学习机。仿真实验结... 针对传统在线贯序极限学习机存在的过学习和分类器输出不稳定等问题,将结构风险最小化理论引入到极限学习机中,用小波函数替代原有的隐层激励函数构建正则小波极限学习机,并与在线学习方法结合,提出在线正则小波极限学习机。仿真实验结果表明,在线正则小波极限学习机克服过学习和局部最优等问题,能够实现快速在线学习,具有良好的泛化性和鲁棒性。 展开更多
关键词 在线贯序极限学习机 小波分析 在线学习 模式识别 结构风险 泛化性能 鲁棒性
下载PDF
基于在线贯序极限学习机的齿轮故障诊断方法 被引量:2
2
作者 秦波 刘永亮 +1 位作者 王建国 杨云中 《机械设计与制造》 北大核心 2016年第12期101-104,共4页
针对表征齿轮故障信息的特征难提取与极限学习机无法处理随时间变化的信息流,致使齿轮故障分类模型精度差、泛化能力弱的问题,提出一种基于在线贯序极限学习机的齿轮故障诊断方法。该方法首先将齿轮振动信号进行相空间重构,并对重构矩... 针对表征齿轮故障信息的特征难提取与极限学习机无法处理随时间变化的信息流,致使齿轮故障分类模型精度差、泛化能力弱的问题,提出一种基于在线贯序极限学习机的齿轮故障诊断方法。该方法首先将齿轮振动信号进行相空间重构,并对重构矩阵进行奇异值分解得到奇异值特征向量;其次,建立在线贯序极限学习机的齿轮故障分类模型,并将奇异值特征向量作为模型输入进行齿轮不同故障状态的辨识。实验结果表明:与基于BP、SVM与ELM的故障分类方法相比,基于基于在线贯序极限学习机的齿轮故障诊断方法具有更快的学习速度、更高的分类精度与更强的泛化能力。 展开更多
关键词 相空间重构 奇异值 在线贯序极限学习机 齿轮 故障诊断
下载PDF
基于主曲线的不均衡在线贯序极限学习机研究
3
作者 王金婉 毛文涛 +1 位作者 王礼云 何玲 《计算机科学》 CSCD 北大核心 2016年第3期62-67,共6页
针对现有机器学习算法难以有效提高不均衡在线贯序数据中少类样本分类精度的问题,提出了一种基于主曲线的不均衡在线贯序极限学习机。该方法的核心思路是根据在线贯序数据的分布特性,均衡各类别样本,以减少少类样本合成过程中的盲目性,... 针对现有机器学习算法难以有效提高不均衡在线贯序数据中少类样本分类精度的问题,提出了一种基于主曲线的不均衡在线贯序极限学习机。该方法的核心思路是根据在线贯序数据的分布特性,均衡各类别样本,以减少少类样本合成过程中的盲目性,主要包括离线和在线两个阶段。离线阶段采用主曲线分别建立各类别样本的分布模型,利用少类样本合成过采样算法对少类样本过采样,并根据各样本点到对应主曲线的投影距离分别为其设定相应大小的隶属度,最后根据隶属区间削减多类和少类虚拟样本,进而建立初始模型。在线阶段对贯序到达的少类样本过采样,并根据隶属区间均衡贯序样本,进而动态更新网络权值。通过理论分析证明了所提算法在理论上存在损失信息上界。采用UCI标准数据集和实际澳门气象数据进行仿真实验,结果表明,与现有典型算法相比,该算法对少类样本的预测精度更高,数值稳定性更好。 展开更多
关键词 在线贯序极限学习机 不均衡数据 主曲线 少类样本合成过采样
下载PDF
加权在线贯序极限学习机算法及其应用
4
作者 孙毅刚 刘静雅 赵珍 《计算机工程与设计》 CSCD 北大核心 2014年第10期3594-3597,3666,共5页
针对在线贯序极限学习机对所有数据等权处理这一缺陷,提出加权在线贯序极限学习机算法。依据运算过程中产生的网络均方根误差的差异,给新数据以及历史数据分配不同的权值,当网络均方根误差较大时减小其权值,较小时增大其权值。该算法实... 针对在线贯序极限学习机对所有数据等权处理这一缺陷,提出加权在线贯序极限学习机算法。依据运算过程中产生的网络均方根误差的差异,给新数据以及历史数据分配不同的权值,当网络均方根误差较大时减小其权值,较小时增大其权值。该算法实现了对新旧数据的不等权处理,利用航空发动机传感器数据验证该算法的可行性。验证结果表明,基于该算法所建的航空发动机传感器故障诊断模型要比基于传统在线贯序极限学习机算法所建模型的精度更高。 展开更多
关键词 在线贯序极限学习机 航空发动机 传感器 故障诊断 加权
下载PDF
基于在线惯序极限学习机的瞬变电磁非线性反演 被引量:4
5
作者 李瑞友 张淮清 吴昭 《物探与化探》 CAS 北大核心 2021年第4期1048-1054,共7页
基于梯度下降法的传统人工神经网络瞬变电磁反演方法计算效率低,不能保证全局收敛。为了解决上述问题,提出一种在线惯序极限学习机(online sequential extreme learning machine,OSELM)的瞬变电磁反演方法。该方法针对瞬变电磁法所获取... 基于梯度下降法的传统人工神经网络瞬变电磁反演方法计算效率低,不能保证全局收敛。为了解决上述问题,提出一种在线惯序极限学习机(online sequential extreme learning machine,OSELM)的瞬变电磁反演方法。该方法针对瞬变电磁法所获取的高维勘探数据进行建模反演,首先,通过随机设定隐层参数(输入权值和偏差)来简化模型的学习过程;然后,将测试得到的预测样本加入训练样本中,作为下一次的更新信息,建立在线贯序极限学习机预测模型,从而最大限度提高反演精度;最后,设计了两个经典的瞬变电磁层状地电模型并进行了拟二维地电模型的反演。反演结果表明,该方法能够较好地解决瞬变电磁法高维数据非线性建模的反演问题,同时相较极限学习机(extreme learning machine,ELM),非线性反演方法具有更加准确的反演结果、更好的泛化能力以及更高的计算效率,为神经网络在地球物理反演中的应用提供了新思路。 展开更多
关键词 瞬变电磁法 人工神经网络 在线惯序极限学习机 反演
下载PDF
序极限算子的分解
6
作者 周玉莎 陈滋利 文永明 《西南民族大学学报(自然科学版)》 CAS 2015年第3期360-363,共4页
给出了序极限算子的定义以及其序列的等价刻画,同时得到了当值域空间与定义域空间相同时,序极限算子与区间是极限集是等价的.序极限算子满足左乘的性质,并且由序极限算子构成的全体是闭子空间.除此之外,也给出了判定序极限算子的充分不... 给出了序极限算子的定义以及其序列的等价刻画,同时得到了当值域空间与定义域空间相同时,序极限算子与区间是极限集是等价的.序极限算子满足左乘的性质,并且由序极限算子构成的全体是闭子空间.除此之外,也给出了判定序极限算子的充分不必要条件,并给出结论不是充要条件的反例.序极限算子具有分解性,即可以通过具有序连续范数的Banach格分解,可得到相关结论. 展开更多
关键词 序极限算子 连续范数 分解性
下载PDF
一种基于在线序贯极限学习机的大型舰船甲板态势预测方法 被引量:4
7
作者 刘锡祥 宋清 +2 位作者 司马健 黄永江 杨燕 《中国惯性技术学报》 EI CSCD 北大核心 2016年第2期269-274,共6页
在舰船摇荡运动无法有效抑制时,可利用惯性导航系统实时测量甲板运动,并利用甲板运动的当前以及历史数据对未来时刻的甲板运动进行预测,以提高舰载机的起降安全性。然而甲板摇荡运动作为风浪、潮汐等共同作用的产物,具有较强的非线性、... 在舰船摇荡运动无法有效抑制时,可利用惯性导航系统实时测量甲板运动,并利用甲板运动的当前以及历史数据对未来时刻的甲板运动进行预测,以提高舰载机的起降安全性。然而甲板摇荡运动作为风浪、潮汐等共同作用的产物,具有较强的非线性、随机性和时变性。针对上述特性,引入具有信息实时更新功能的在线序贯极限学习机(OS-ELM)方法对甲板运动态势进行预测。该方法通过实时更新参与模型解算的样本数据,具有计算量小、学习映射能力强的优点。针对OS-ELM中存在的隐含层节点个数选择,以及甲板态势预测中出现的样本个数、历史数据长度等参数选择问题,引入遗传算法(GA)进行寻优。基于模拟甲板摇荡数据的仿真表明,该预测方法可以实时跟踪甲板运动的实时性变化,并对甲板运动态势进行预测。 展开更多
关键词 甲板态势预测 在线极限学习机 信息更新 遗传算法
下载PDF
改进小波序贯极限学习机的光电经纬仪空间配准算法研究 被引量:2
8
作者 杨宏韬 高慧斌 刘鑫 《中国测试》 CAS 北大核心 2015年第10期1-5,共5页
针对光电经纬仪数据融合系统中的空间配准问题,提出复合函数小波神经网络序贯极限学习机光电经纬仪空间配准算法。该算法将小波理论引入到极限学习机中,利用小波函数和任意分段连续非线性函数构造极限学习机隐层节点激励函数,小波函数... 针对光电经纬仪数据融合系统中的空间配准问题,提出复合函数小波神经网络序贯极限学习机光电经纬仪空间配准算法。该算法将小波理论引入到极限学习机中,利用小波函数和任意分段连续非线性函数构造极限学习机隐层节点激励函数,小波函数的伸缩因子和平移因子根据输入数据范围进行初始化,并结合极限学习机在线学习方法进行训练。实验结果表明:改进小波序贯极限学习机的光电经纬仪空间配准算法可以使光电经纬仪的测量精度提高到3″以内,与标准极限学习机空间配准算法相比,该算法能够实现在线增量式快速学习,具有更好的泛化性能。 展开更多
关键词 光电经纬仪 空间配准 小波神经网络 极限学习机
下载PDF
导出极限序同态及逆系统的范畴性质
9
作者 李生刚 《青海师范大学学报(自然科学版)》 1992年第2期15-20,共6页
在文[1]的基础上,引入了LF拓扑空间的逆系统之间的映射以及导出极限序同态的概念,讨论了极限序同态的一些性质;利用LF拓扑空间的逆系统的极限刻划了范畴LFTZ中的投影极限;最后讨论了一些范畴的投影完备性.
关键词 逆系统 极限 极限同态 投影极限 投影完备性
下载PDF
基于量子进化在线序贯极限学习机的变桨系统故障检测 被引量:4
10
作者 李强 张宇献 《太阳能学报》 EI CAS CSCD 北大核心 2022年第1期44-51,共8页
针对复杂工况下风电机组变桨系统故障检测问题,采用在线序贯极限学习机建立变桨系统状态监测模型,利用ReliefF算法进行模型的特征选择,通过量子进化算法优化在线序贯极限学习机的超参数集,并引入马氏距离函数计算变桨系统状态监测模型... 针对复杂工况下风电机组变桨系统故障检测问题,采用在线序贯极限学习机建立变桨系统状态监测模型,利用ReliefF算法进行模型的特征选择,通过量子进化算法优化在线序贯极限学习机的超参数集,并引入马氏距离函数计算变桨系统状态监测模型的残差,判断风电机组变桨系统的异常。以辽宁某风电场1.5 MW双馈风电机组变桨系统为例,将所提出的模型分别与粒子群优化极限学习机、粒子群优化支持向量机、随机权神经网络、极限学习机和反向传播神经网络模型进行对比,结果表明所提出的模型精度优于其他模型,所提方法的故障检测正确率高于3σ阈值法和核主成分分析方法。 展开更多
关键词 风电机组 故障检测 状态监测 变桨系统 在线极限学习机 量子进化算法
下载PDF
基于在线序贯极限学习机的温室温度预测方法及其自适应控制系统设计 被引量:5
11
作者 张立优 马珺 +2 位作者 贾华宇 王曦 张朝霞 《江苏农业科学》 2018年第14期226-230,共5页
针对现有的温室控制方法难以对温室系统做出精准预测和有效控制等问题,提出一种基于在线序贯极限学习机(online sequential extreme learning machine,简称OS-ELM)神经网络的温室温度预测及其自适应控制方法。该方法采用OS-ELM神经网络... 针对现有的温室控制方法难以对温室系统做出精准预测和有效控制等问题,提出一种基于在线序贯极限学习机(online sequential extreme learning machine,简称OS-ELM)神经网络的温室温度预测及其自适应控制方法。该方法采用OS-ELM神经网络构建温室系统的温度预测模型,并用于温室温度预测;将预测模型的输出作为模糊神经网络控制器(fuzzy neural network controller,简称FNNC)的理想输出参考量,结合FNNC的实际输出量,将FNNC输出误差作为遗传算法(genetic algorithm,简称GA)优化FNNC参数的目标函数,构成在线预测的模糊控制策略。在温室温度预测模型采用物理建模、Elman神经网络建模和OS-ELM神经网络建模方法下对温室温度控制进行试验,结果表明,基于OS-ELM的温室温度预测方法及其自适应控制系统具有较好的性能优势,可有效提高温室的预测和控制精度。 展开更多
关键词 在线极限学习机 模糊神经网络控制器 自适应控制 遗传算法 在线温室温度预测模型
下载PDF
L-序水平一致极限空间
12
作者 王文静 方进明 《四川师范大学学报(自然科学版)》 CAS 北大核心 2019年第1期30-34,共5页
基于满层L-滤子的L-包含序,提出L-序一致极限空间的概念,证明L-序一致极限空间范畴作为拓扑范畴是笛卡儿闭的.同时利用"水平结构"的思想,发现了它的水平空间,即L-序水平一致极限空间.在证明L-序水平一致极限空间范畴与L-序一... 基于满层L-滤子的L-包含序,提出L-序一致极限空间的概念,证明L-序一致极限空间范畴作为拓扑范畴是笛卡儿闭的.同时利用"水平结构"的思想,发现了它的水平空间,即L-序水平一致极限空间.在证明L-序水平一致极限空间范畴与L-序一致极限空间范畴是范畴同构的同时,还建立了L-序水平一致极限空间范畴是文献中L-水平一致极限空间范畴的双反射子范畴这一深入联系. 展开更多
关键词 一致极限 笛卡儿闭性 L-一致极限空间 L-水平一致极限空间 双反射子范畴
下载PDF
PID补偿的完全在线序贯极限学习机控制器在输入扰动系统自适应控制中的应用
13
作者 张立优 马珺 贾华宇 《计算机应用》 CSCD 北大核心 2018年第4期1213-1217,共5页
针对输入受外界扰动的系统在实现自适应控制难的问题,提出一种比例-积分-微分(PID)补偿的完全在线序贯极限学习机(FOS-ELM)控制器设计方法。首先,建立系统的动态线性模型,采用FOS-ELM算法设计控制器并学习其参数;其次,计算系统的实际输... 针对输入受外界扰动的系统在实现自适应控制难的问题,提出一种比例-积分-微分(PID)补偿的完全在线序贯极限学习机(FOS-ELM)控制器设计方法。首先,建立系统的动态线性模型,采用FOS-ELM算法设计控制器并学习其参数;其次,计算系统的实际输出误差,结合系统的控制误差,设计所需补偿的PID增量参数;最后,对PID补偿的FOS-ELM控制器参数在线调整并用于系统控制。在发动机空气燃油比(AFR)控制系统模型上进行实验,实验结果表明上述方法在实现自适应控制的同时降低了系统扰动输入带来的干扰,提高了系统有效控制率,在正负干扰系数为0.2时,其有效控制率从不足53%提高到93%以上。同时该方法易于实现,具有很强的鲁棒性和实用价值。 展开更多
关键词 完全在线极限学习机 输入扰动 自适应控制 比例积分微分增量 控制误差
下载PDF
一类逆极限序的极小集
14
作者 冯庆富 郭彦平 《河北轻化工学院学报》 1996年第2期7-9,共3页
通过公理A*研究了公理A自覆盖映射的逆极限序的极小集,证明了其拓朴维数为零。
关键词 动力系统 极限 马氏分解 极小集
下载PDF
基于正则化与遗忘因子的极限学习机及其在故障预测中的应用 被引量:11
15
作者 杜占龙 李小民 +2 位作者 郑宗贵 张国荣 毛琼 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第7期1546-1553,共8页
为了解决在线贯序极限学习机(OS-ELM)算法容易产生奇异矩阵、算法贯序更新过程中没有考虑训练样本时效性的问题,提出基于l2-正则化和自适应遗忘因子的OS-ELM(RFOS-ELM)算法。RFOS-ELM在初始阶段加入正则化机制,克服因矩阵奇异而降低OS-... 为了解决在线贯序极限学习机(OS-ELM)算法容易产生奇异矩阵、算法贯序更新过程中没有考虑训练样本时效性的问题,提出基于l2-正则化和自适应遗忘因子的OS-ELM(RFOS-ELM)算法。RFOS-ELM在初始阶段加入正则化机制,克服因矩阵奇异而降低OS-ELM泛化能力的缺点。在贯序更新阶段,RFOS-ELM通过引入自适应遗忘因子实时调整新旧训练样本所占比重,推导正则化条件下带遗忘因子RFOS-ELM的递推更新算法,提高其对动态变化系统的跟踪能力。某型无人机机载发射机故障预测实例表明,相比于传统OS-ELM和正则化OS-ELM算法,本文提出方法具有更高的预测精度。 展开更多
关键词 故障预测 时间 在线贯序极限学习机 l2-正则化 遗忘机制
下载PDF
山岭隧道洞口段地表沉降时序预测研究 被引量:18
16
作者 王述红 朱宝强 《岩土工程学报》 EI CAS CSCD 北大核心 2021年第5期813-821,I0003,共10页
地表沉降监测值具有复杂性及非线性动态变化特征,以往静态模型预测时常存在易受历史监测数据干扰且模型输入权值及阈值选择较为困难的问题,鉴于此,提出一种洞口段地表沉降动态预测方法。利用3次样条函数插值法将监测数据等距化,并结合... 地表沉降监测值具有复杂性及非线性动态变化特征,以往静态模型预测时常存在易受历史监测数据干扰且模型输入权值及阈值选择较为困难的问题,鉴于此,提出一种洞口段地表沉降动态预测方法。利用3次样条函数插值法将监测数据等距化,并结合时序分析理论和变分模态分解(VMD),将地表沉降分解为趋势项和随机项位移;通过采用灰狼优化算法(GWO)对在线贯序极限学习机模型(OSELM)的权值及阈值进行优化,建立了GWO-OSELM动态预测模型,分别对位移分量进行预测;以重庆市兴隆隧道洞口段为例,利用该模型进行预测,并与传统模型进行对比,最后探讨了激励函数的选择对模型预测性能的影响及随机项位移的部分影响因素。结果表明:非等距时序数据预处理后,模型能够有效地对位移分量进行预测,预测精度高、误差小,且Sigmoid激励函数更适合该模型,而地表沉降速率和拱顶下沉速率对随机项位移有重要影响。可为山岭隧道洞口段地表沉降的长期预测提供一种新的思路和方法。 展开更多
关键词 山岭隧道 地表沉降 非等距时间 变分模态分解 灰狼优化 在线贯序极限学习机
下载PDF
WOS-ELM算法在入侵检测中的研究 被引量:8
17
作者 康松林 刘楚楚 +2 位作者 樊晓平 李宏 杨宁 《小型微型计算机系统》 CSCD 北大核心 2015年第8期1779-1783,共5页
随着信息化建设的深入,网络攻击变得复杂多变,严重威胁着网络安全与信息安全.一个好的入侵检测系统往往要求具有高效性,高速性,智能性,实时性,以及应对不同网络环境在线数据的鲁棒性.基于以上五点要求,提出一种权值更新的在线贯序极限... 随着信息化建设的深入,网络攻击变得复杂多变,严重威胁着网络安全与信息安全.一个好的入侵检测系统往往要求具有高效性,高速性,智能性,实时性,以及应对不同网络环境在线数据的鲁棒性.基于以上五点要求,提出一种权值更新的在线贯序极限学习机算法(WOS-ELM)来应用于网络入侵检测.该算法采用一个一个数据或一块一块数据添加的增量学习算法,将多次迭代求解的神经网络训练转变为一次求解的线性方程组,并通过一种有效的权值赋予的方法来解决网络环境数据不均衡的问题.实验表明,该方法具有很高的正确率,并能在短时间内达到很好的分类效果;较之其他算法,它更适合处理大规模网络实时环境中大量的原始数据,对统计数据依赖性小,对不均衡数据分类具有较好的鲁棒性.因此,基于权值更新的在线贯序极限学习机算法更适应于复杂多变的网络环境下的入侵检测. 展开更多
关键词 网络入侵检测 在线贯序极限学习机 增量学习 权值更新 不均衡数据分类
下载PDF
基于混沌灰狼优化算法的氧化铝质量指标预测模型 被引量:10
18
作者 徐辰华 李成县 +1 位作者 王尤军 林小峰 《广西大学学报(自然科学版)》 CAS 北大核心 2016年第6期1869-1878,共10页
针对氧化铝焙烧过程具有强非线性、检测滞后等特点,提出一种基于混沌灰狼优化算法(CGWO)参数优化在线贯序极限学习机(OSELM)的氧化铝质量预测模型。在基于机理分析和变量相关性分析的基础上,选择氧化铝质量指标预测模型的输入变量,采用... 针对氧化铝焙烧过程具有强非线性、检测滞后等特点,提出一种基于混沌灰狼优化算法(CGWO)参数优化在线贯序极限学习机(OSELM)的氧化铝质量预测模型。在基于机理分析和变量相关性分析的基础上,选择氧化铝质量指标预测模型的输入变量,采用在线序贯极限学习机的方法建立模型,并利用改进的混沌灰狼优化算法得到最优的初始权值和隐含层偏差,实现焙烧过程氧化铝质量预测建模。采用工业过程数据对提出的方法进行实验验证,仿真结果表明:所建立的预测模型具有更好的精度,从而验证了方法的有效性。 展开更多
关键词 氧化铝焙烧过程 质量预测 在线贯序极限学习机 Tent混沌 灰狼优化算法
下载PDF
基于改进MEEMD与DE-OSELM的滚动轴承故障诊断方法 被引量:2
19
作者 蒋永华 黄涛涛 +4 位作者 李刚 焦卫东 徐翠 夏海成 王晨 《浙江师范大学学报(自然科学版)》 CAS 2021年第4期395-403,共9页
针对现场采集的信号因混有噪声而使故障特征提取困难的问题,基于奇异值分解(SVD)、改进的集合经验模态分解(MEEMD)、差分进化算法(DE)、在线贯序极限学习机(OSELM),提出了一种基于改进MEEMD与DE-OSELM的滚动轴承故障诊断方法.首先进行ME... 针对现场采集的信号因混有噪声而使故障特征提取困难的问题,基于奇异值分解(SVD)、改进的集合经验模态分解(MEEMD)、差分进化算法(DE)、在线贯序极限学习机(OSELM),提出了一种基于改进MEEMD与DE-OSELM的滚动轴承故障诊断方法.首先进行MEEMD分解,对MEEMD算法中经排列熵筛选出的异常IMF分量进行SVD降噪,与剩余信号重构后直接进行EMD分解;其次提取各IMF分量的能量作为特征构造特征集;最后将获得的特征集作为DE-OSELM的输入进行训练并识别故障类型.对实际4种不同健康状态的滚动轴承样本进行分类识别,并与常用分类方法进行比较.结果表明:该方法具有更高的准确率,可以更有效地实现故障诊断. 展开更多
关键词 MEEMD 排列熵 差分进化算法 在线贯序极限学习机 故障诊断
下载PDF
基于OS-ELM的风机关键机械部件故障诊断方法 被引量:7
20
作者 占健 吴斌 +1 位作者 王加祥 余建波 《机械制造》 2015年第4期66-70,共5页
针对传统故障诊断中前馈神经网络算法诊断效果不佳、泛化能力不强问题,提出了基于在线贯序极限学习机(OS-ELM)的风机关键机械部件故障诊断方法。该方法将测试得到的预测样本加入训练样本,作为下一次的更新信息,建立在线贯序极限学习机... 针对传统故障诊断中前馈神经网络算法诊断效果不佳、泛化能力不强问题,提出了基于在线贯序极限学习机(OS-ELM)的风机关键机械部件故障诊断方法。该方法将测试得到的预测样本加入训练样本,作为下一次的更新信息,建立在线贯序极限学习机诊断模型,从而最大限度提高故障诊断精度,分析了激活函数、隐层节点数目对诊断性能的影响,并同BP神经网络、SVM以及ELM神经网络进行对比。实验表明,该方法在风机关键机械部件出现故障情况下,OS-ELM网络能够作出准确诊断且性能明显优于BP神经网络,与SVM、ELM故障分类准确率相当,但极大地提高了运算速度,便于工程应用。 展开更多
关键词 风力发电机 在线贯序极限学习机 故障诊断
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部