期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
低SNR场景下微型无人机跟踪-检测融合方法 被引量:11
1
作者 方鑫 朱婧 +2 位作者 黄大荣 张振源 肖国清 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第4期79-88,共10页
针对低信噪比(SNR)场景下微型无人机探测难题,本文提出了一种基于序贯蒙特卡罗-检测前跟踪(SMC-TBD)的多输入多输出雷达目标跟踪-检测融合方法。区别于跟踪和检测过程相互独立的传统方法,本文方法直接利用三维傅里叶变换后未经阈值处理... 针对低信噪比(SNR)场景下微型无人机探测难题,本文提出了一种基于序贯蒙特卡罗-检测前跟踪(SMC-TBD)的多输入多输出雷达目标跟踪-检测融合方法。区别于跟踪和检测过程相互独立的传统方法,本文方法直接利用三维傅里叶变换后未经阈值处理的雷达原始数据,通过SMC方法计算目标累积存在概率,在实现微型无人机连续检测的同时,完成目标轨迹的高精度跟踪。本文方法的创新在于通过融合检测和跟踪过程,实现了时间-距离-多普勒-方位域目标能量累积,提高了低SNR场景下微型无人机探测性能。实验结果表明,本文方法在SNR低于-20 dB时,微型无人机跟踪性能才逐渐恶化,相比于雷达量测、扩展卡尔曼滤波和粒子滤波提升了约8 dB。 展开更多
关键词 微型无人机 多输入多输出雷达 蒙特卡罗-检测前跟踪 长时间能量累积
下载PDF
一种从彩色扫描图像上提取等高线的方法 被引量:3
2
作者 赵国成 孙群 +1 位作者 安晓亚 陈焕新 《测绘通报》 CSCD 北大核心 2011年第4期35-37,共3页
针对基于滑动窗口分割及序贯跟踪的彩色地图矢量化存在的不足,通过试验改进由灰度较低的像素导致跟踪出现失败或错误的情况。实践表明,改进后的算法可以避免误追踪、追踪死循环等情况。
关键词 彩色扫描图像 矢量化 等高线 序贯跟踪
下载PDF
Multiple hypothesis tracking based on the Shiryayev sequential probability ratio test 被引量:2
3
作者 Jinbin FU Jinping SUN +1 位作者 Songtao LU Yingjing ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第12期86-96,共11页
To date, Wald sequential probability ratio test(WSPRT) has been widely applied to track management of multiple hypothesis tracking(MHT). But in a real situation, if the false alarm spatial density is much larger than ... To date, Wald sequential probability ratio test(WSPRT) has been widely applied to track management of multiple hypothesis tracking(MHT). But in a real situation, if the false alarm spatial density is much larger than the new target spatial density, the original track score will be very close to the deletion threshold of the WSPRT. Consequently, all tracks, including target tracks, may easily be deleted, which means that the tracking performance is sensitive to the tracking environment. Meanwhile, if a target exists for a long time, its track will have a high score, which will make the track survive for a long time even after the target has disappeared. In this paper, to consider the relationship between the hypotheses of the test, we adopt the Shiryayev SPRT(SSPRT) for track management in MHT. By introducing a hypothesis transition probability, the original track score can increase faster, which solves the first problem. In addition, by setting an independent SSPRT for track deletion, the track score can decrease faster, which solves the second problem. The simulation results show that the proposed SSPRT-based MHT can achieve better tracking performance than MHT based on the WSPRT under a high false alarm spatial density. 展开更多
关键词 multiple target tracking multiple hypothesis tracking Shiryayev sequential probability ratio test track management track score
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部