Making use of the relativistic BBGKY technique,the relativistic generalization of Landau collision integral is obtained.Furthermore,we calculate the relativistic hydrodynamic modes up to the second order in the hydrod...Making use of the relativistic BBGKY technique,the relativistic generalization of Landau collision integral is obtained.Furthermore,we calculate the relativistic hydrodynamic modes up to the second order in the hydrodynamic wave number.Combining Résibois' method,we present the first principle formula of the relativistic heat conductivity of Coulomb electronic plasmas for low-order corrections.展开更多
The microscopic recollision dynamics in strong-field nonsequential double ionization of Ar atoms is in- vestigated using three-dimensional classical ensembles. By adjusting the nuclear Coulomb potential, we can excell...The microscopic recollision dynamics in strong-field nonsequential double ionization of Ar atoms is in- vestigated using three-dimensional classical ensembles. By adjusting the nuclear Coulomb potential, we can excellently reproduce the experimental results both within the laser intensity regimes well above the reeollision threshold and well below the recollision threshold quantitatively. More importantly, our trajectory analysis clearly reveals the particular electronic dynamics in recollision process: the momentum of the recolliding electron encounters a sudden change both in magnitude and in direction when it approaches the nucleus closely, which show that the nuclear Coulomb attraction plays a key role in the recollision process of nonsequential double ionization of Ar atoms.展开更多
Through meticulous design, a Li-lacking Cr2O5 cathode is physically mixed with Li-rich Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O2(LNCM) cathode to form composite cathodes LNCM@x Cr2O5(x = 0, 0.1, 0.2, 0.3, 0.35, 0.4...Through meticulous design, a Li-lacking Cr2O5 cathode is physically mixed with Li-rich Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O2(LNCM) cathode to form composite cathodes LNCM@x Cr2O5(x = 0, 0.1, 0.2, 0.3, 0.35, 0.4, mass ratio) in order to make use of the excess lithium produced by the Li-rich component in the first charge-discharge process. The initial coulombic efficiency(ICE) of LNCM half-cell has been significantly increased from75.5%(x = 0) to 108.9%(x = 0.35). A novel full-cell comprising LNCM@Cr2O5composite cathode and Li4Ti5O(12) anode has been developed. Such electrode accordance, i.e., LNCM@Cr2O5//Li4Ti5O(12)("L-cell"), shows a particularly high ICE of97.7%. The "L-cell" can transmit an outstanding reversible capacity up to 250 mA h g-1and has 94% capacity retention during 50 cycles. It also has superior rate capacities as high as122 and 94 mA h g-(-1)at 1.25 and 2.5 A g-(-1)current densities,which are even better in comparison of Li-rich//graphite fullcell("G-cell"). The high performance of "L-cell" benefiting from the well-designed coulombic efficiency accordance mechanism displays a great potential for fast charge-discharge applications in future high-energy lithium ion batteries.展开更多
文摘Making use of the relativistic BBGKY technique,the relativistic generalization of Landau collision integral is obtained.Furthermore,we calculate the relativistic hydrodynamic modes up to the second order in the hydrodynamic wave number.Combining Résibois' method,we present the first principle formula of the relativistic heat conductivity of Coulomb electronic plasmas for low-order corrections.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11005088 and 11047145the Science & Technology Project of Henan Province in China under Grant Nos. 102300410241 and 112300410021the Scientific Research Foundation of Education Department of Henan Province in China under Grant Nos. 2009A140006 and 2011B140018
文摘The microscopic recollision dynamics in strong-field nonsequential double ionization of Ar atoms is in- vestigated using three-dimensional classical ensembles. By adjusting the nuclear Coulomb potential, we can excellently reproduce the experimental results both within the laser intensity regimes well above the reeollision threshold and well below the recollision threshold quantitatively. More importantly, our trajectory analysis clearly reveals the particular electronic dynamics in recollision process: the momentum of the recolliding electron encounters a sudden change both in magnitude and in direction when it approaches the nucleus closely, which show that the nuclear Coulomb attraction plays a key role in the recollision process of nonsequential double ionization of Ar atoms.
基金supported by the National Natural Science Foundation of China(51577175)NSAF(U1630106)
文摘Through meticulous design, a Li-lacking Cr2O5 cathode is physically mixed with Li-rich Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O2(LNCM) cathode to form composite cathodes LNCM@x Cr2O5(x = 0, 0.1, 0.2, 0.3, 0.35, 0.4, mass ratio) in order to make use of the excess lithium produced by the Li-rich component in the first charge-discharge process. The initial coulombic efficiency(ICE) of LNCM half-cell has been significantly increased from75.5%(x = 0) to 108.9%(x = 0.35). A novel full-cell comprising LNCM@Cr2O5composite cathode and Li4Ti5O(12) anode has been developed. Such electrode accordance, i.e., LNCM@Cr2O5//Li4Ti5O(12)("L-cell"), shows a particularly high ICE of97.7%. The "L-cell" can transmit an outstanding reversible capacity up to 250 mA h g-1and has 94% capacity retention during 50 cycles. It also has superior rate capacities as high as122 and 94 mA h g-(-1)at 1.25 and 2.5 A g-(-1)current densities,which are even better in comparison of Li-rich//graphite fullcell("G-cell"). The high performance of "L-cell" benefiting from the well-designed coulombic efficiency accordance mechanism displays a great potential for fast charge-discharge applications in future high-energy lithium ion batteries.