Although high resolution can be provided by electrical logging, the measured electrical log range is narrow and is limited to near the well. Borehole-surface electric potential measurements are able to detect a wide e...Although high resolution can be provided by electrical logging, the measured electrical log range is narrow and is limited to near the well. Borehole-surface electric potential measurements are able to detect a wide enough range but its resolution is limited, particularly for reservoirs with complex oil and water distribution or complicated structure. In this study, we attempt to accurately locate the 3-D reservoir water and oil distribution by combining borehole-surface and crosswell electric potentials. First, the distributions of oil and water in both vertical and horizontal directions are detected by the borehole-surface and erosswell electric potential methods, respectively, and then the measured crosswell potential result is used to calibrate the measured borehole-surface electric potential data to improve vertical resolution so that the residual oil distribution is determined in a lower half-space with three dimensions. The evaluation of residual oil distribution is obtained by investigation of differences between the simulation results of the reservoir with and without water flooding. The finite difference numerical simulation results prove that the spatial residual oil distribution can be effectively determined by combining the crosswell and borehole-surface electric potentials.展开更多
This study applied a multivariate model based on three simulated sensors to estimating water quality variables in Shitoukoumen Reservoir,Changchun City,Jilin Province,China,including concentration of total suspended m...This study applied a multivariate model based on three simulated sensors to estimating water quality variables in Shitoukoumen Reservoir,Changchun City,Jilin Province,China,including concentration of total suspended matter,concentration of chlorophyll-a and non-pigment matter absorption.Two field campaigns for spectra measurements with a total of 40 samples were carried out on June 13 and September 23,2008.The in-situ spectra were recalculated to the spectral bands and sensitivities of the instruments applied in this paper,i.e.Landsat TM,Alos and P6,by using the average method.And the recalculated spectra were used for estimating water quality variables by the single model and multivariate model.The results show that the multivariate model is superior to the single model as the multivariate model takes the combined effects of water components into consideration and can estimate water quality variables simultaneously.According to R2 and RMSE,Alos is superior to other sensors for water quality variables estimation although the precision of non-pigment matter absorption inversion performed the second.展开更多
RS (remote sensing) applications to hydrological problem solving have successfully transitioned from being experimental to operational in the last couple of years, and information gathered through these technologies...RS (remote sensing) applications to hydrological problem solving have successfully transitioned from being experimental to operational in the last couple of years, and information gathered through these technologies can facilitate water resource procedures. Patterns from RS imagery can be translated into a deterministic distribution of input data over a wide area on a pixel-by-pixel basis. This paper presents the implementation of different methodologies of integrating satellite-derived information from RS, and GIS (geographic information system) visualization and simulation capabilities in improving hydrologic estimation processes.展开更多
Based on a high-resolution regional climate model (RegCM3) simulation over East Asia, future climate changes over the Miyun Reservoir in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) Spec...Based on a high-resolution regional climate model (RegCM3) simulation over East Asia, future climate changes over the Miyun Reservoir in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario are analyzed. The model simulation extends from 1951 to 2100 at a grid spacing of 25 km and is one-way nested within a global model of MIROC3.2_ hires (the Model for Interdisciplinary Research on Climate). The focus of the analysis is on the Watershed of Miyun Reservoir, the main water supply for Beijing in northern China. The results show that RegCM3 reproduces the observed temperature well but it overestimates precipitation over the region. Significant warming in the 21st century is simulated in the annual mean, December-January-February (DJF) and June-July-August (JJA), although with differences concerning the spatial distribution and magnitude. Changes in precipitation for the annual mean, DJF, and JJA also show differences. A prevailing increase of precipitation in DJF and a decrease of it in JJA is projected over the region, while little change in the annual mean is projected. Changes of the difference between precipitation and evapotranspiration to measure the potential water availability are also presented in the paper.展开更多
In this paper, we build up a three-dimensional model for CO2 storage in the deep reservoir. And this paper gives the mathematical formalism of combined geochemical and multi-phase flow. The results give us the informa...In this paper, we build up a three-dimensional model for CO2 storage in the deep reservoir. And this paper gives the mathematical formalism of combined geochemical and multi-phase flow. The results give us the information about geochemical changing caused by CO2 injection into aqueous, the dissolution or precipitation of reservoir minerals caused by aqueous components change, the change of water density, also the differences between this model and the simulation model without considering geochemical. The basic data for simulation is from York Reservoir.展开更多
One of the key problems in the use of underground gas storage is frequent leakage. It can lead to the actual gas storage amount being less than that accounted for. Combining numerical simulation and parameter auto fit...One of the key problems in the use of underground gas storage is frequent leakage. It can lead to the actual gas storage amount being less than that accounted for. Combining numerical simulation and parameter auto fit, this paper ascertains the dynamic variation of the pressure in the storage reservoir, adjusts the actual injecting and producing gas to fit the accounted pressure with the tested pressure, obtains the gas leakage of the storage, and then determines the difference between accounted amount and leakage amount. The result is the actual reserves of the storage. The simulation result shows that the method presented can provide a theoretic foundation for estimating the leakage amount, thereby ensuring the actual reserves, searching the leakage route, and reducing leakage by adjusting the storage method.展开更多
In the process of accurate interpretation of multi-wave seismic data,we wanted to solve the problem of multi-wave information recognition.Based on techniques of elastic wave forwarding,targeting the geological model o...In the process of accurate interpretation of multi-wave seismic data,we wanted to solve the problem of multi-wave information recognition.Based on techniques of elastic wave forwarding,targeting the geological model of a reservoir of an oil field exploration area,we used a high-order staggered-grid difference technology to simulate many shots of seismic records of nonzero offset shots,implemented multi-wave seismic data processing to acquire the CMP of P waves and converted waves,NMO traces of CCP pre stacks,including AVA information and superposition profiles.Based on the AVA calculation of the model,the layer parameters of the model and the forwarding wave field relations of the P-S wave,we also compared and studied the correspondence between P waves and converted waves.The results of our analysis show that the results from simulation and from the AVO analysis are consistent.Significant wave field differences between P waves and converted waves in the same reservoir were found,which are helpful in recognizing and interpreting the multi-wave information in this area.We made use of the multi-wave data to provide the important guidelines for reservoir prediction.展开更多
A three-dimensional eutrophication model was applied to assist the management of Dahuofang Reservoir in China.Transport processes were obtained from the three-dimensional,finite volume hydrodynamic model.The hydrodyna...A three-dimensional eutrophication model was applied to assist the management of Dahuofang Reservoir in China.Transport processes were obtained from the three-dimensional,finite volume hydrodynamic model.The hydrodynamic model was verified for a one-year time period in 2006.Our simulation reproduced intra-annual variation of stratification.The simulated variation of vertical thermal structures also matched observations.The water quality model included 8 state variables,including dissolved oxygen,phytoplankton as carbon,carbonaceous biochemical oxygen demand,ammonium nitrogen,nitrate and nitrite nitrogen,ortho-phosphorus,organic nitrogen,and organic phosphorus.Sensitivity of the parameters has been analyzed to decide which process would affect the water quality in the simulation.The water quality verification suggested the model successfully computed the temporal cycles and spatial distributions of key water quality components.The comparison between water quality components before and after the first phase of the water conveyance project suggests that the project has a slight effect on the reservoir ecosystem.The model could be used as a tool to guide physico-biological engineering design or management strategies for Dahuofang Reservoir.展开更多
文摘Although high resolution can be provided by electrical logging, the measured electrical log range is narrow and is limited to near the well. Borehole-surface electric potential measurements are able to detect a wide enough range but its resolution is limited, particularly for reservoirs with complex oil and water distribution or complicated structure. In this study, we attempt to accurately locate the 3-D reservoir water and oil distribution by combining borehole-surface and crosswell electric potentials. First, the distributions of oil and water in both vertical and horizontal directions are detected by the borehole-surface and erosswell electric potential methods, respectively, and then the measured crosswell potential result is used to calibrate the measured borehole-surface electric potential data to improve vertical resolution so that the residual oil distribution is determined in a lower half-space with three dimensions. The evaluation of residual oil distribution is obtained by investigation of differences between the simulation results of the reservoir with and without water flooding. The finite difference numerical simulation results prove that the spatial residual oil distribution can be effectively determined by combining the crosswell and borehole-surface electric potentials.
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-340,KZCX2-YW-341)Key Project of Jilin Province Scientific and Technological Development Program (No. 20080425)
文摘This study applied a multivariate model based on three simulated sensors to estimating water quality variables in Shitoukoumen Reservoir,Changchun City,Jilin Province,China,including concentration of total suspended matter,concentration of chlorophyll-a and non-pigment matter absorption.Two field campaigns for spectra measurements with a total of 40 samples were carried out on June 13 and September 23,2008.The in-situ spectra were recalculated to the spectral bands and sensitivities of the instruments applied in this paper,i.e.Landsat TM,Alos and P6,by using the average method.And the recalculated spectra were used for estimating water quality variables by the single model and multivariate model.The results show that the multivariate model is superior to the single model as the multivariate model takes the combined effects of water components into consideration and can estimate water quality variables simultaneously.According to R2 and RMSE,Alos is superior to other sensors for water quality variables estimation although the precision of non-pigment matter absorption inversion performed the second.
文摘RS (remote sensing) applications to hydrological problem solving have successfully transitioned from being experimental to operational in the last couple of years, and information gathered through these technologies can facilitate water resource procedures. Patterns from RS imagery can be translated into a deterministic distribution of input data over a wide area on a pixel-by-pixel basis. This paper presents the implementation of different methodologies of integrating satellite-derived information from RS, and GIS (geographic information system) visualization and simulation capabilities in improving hydrologic estimation processes.
基金supported by the National Natural Science Foundation of China under Grant 40975041the National Basic Research Program of China under Grant 2009CB421407
文摘Based on a high-resolution regional climate model (RegCM3) simulation over East Asia, future climate changes over the Miyun Reservoir in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario are analyzed. The model simulation extends from 1951 to 2100 at a grid spacing of 25 km and is one-way nested within a global model of MIROC3.2_ hires (the Model for Interdisciplinary Research on Climate). The focus of the analysis is on the Watershed of Miyun Reservoir, the main water supply for Beijing in northern China. The results show that RegCM3 reproduces the observed temperature well but it overestimates precipitation over the region. Significant warming in the 21st century is simulated in the annual mean, December-January-February (DJF) and June-July-August (JJA), although with differences concerning the spatial distribution and magnitude. Changes in precipitation for the annual mean, DJF, and JJA also show differences. A prevailing increase of precipitation in DJF and a decrease of it in JJA is projected over the region, while little change in the annual mean is projected. Changes of the difference between precipitation and evapotranspiration to measure the potential water availability are also presented in the paper.
基金Supported by the National Natural Science Foundation of China (50904073) and CNPC Innovation Foundation (2008D-5006-02-06).
文摘In this paper, we build up a three-dimensional model for CO2 storage in the deep reservoir. And this paper gives the mathematical formalism of combined geochemical and multi-phase flow. The results give us the information about geochemical changing caused by CO2 injection into aqueous, the dissolution or precipitation of reservoir minerals caused by aqueous components change, the change of water density, also the differences between this model and the simulation model without considering geochemical. The basic data for simulation is from York Reservoir.
文摘One of the key problems in the use of underground gas storage is frequent leakage. It can lead to the actual gas storage amount being less than that accounted for. Combining numerical simulation and parameter auto fit, this paper ascertains the dynamic variation of the pressure in the storage reservoir, adjusts the actual injecting and producing gas to fit the accounted pressure with the tested pressure, obtains the gas leakage of the storage, and then determines the difference between accounted amount and leakage amount. The result is the actual reserves of the storage. The simulation result shows that the method presented can provide a theoretic foundation for estimating the leakage amount, thereby ensuring the actual reserves, searching the leakage route, and reducing leakage by adjusting the storage method.
基金the Doctor Research Fund for Universities of China (No.20070616004)the National High Technology Research and Development Program of China (No.2007AA060505)
文摘In the process of accurate interpretation of multi-wave seismic data,we wanted to solve the problem of multi-wave information recognition.Based on techniques of elastic wave forwarding,targeting the geological model of a reservoir of an oil field exploration area,we used a high-order staggered-grid difference technology to simulate many shots of seismic records of nonzero offset shots,implemented multi-wave seismic data processing to acquire the CMP of P waves and converted waves,NMO traces of CCP pre stacks,including AVA information and superposition profiles.Based on the AVA calculation of the model,the layer parameters of the model and the forwarding wave field relations of the P-S wave,we also compared and studied the correspondence between P waves and converted waves.The results of our analysis show that the results from simulation and from the AVO analysis are consistent.Significant wave field differences between P waves and converted waves in the same reservoir were found,which are helpful in recognizing and interpreting the multi-wave information in this area.We made use of the multi-wave data to provide the important guidelines for reservoir prediction.
基金supported by the National Science and Technology Major Special Project of China on Water Pollution Control and Management (Grant No. 2009ZX07528-006-01)the National Natural Science Foundation of China (Grant No. 50839001)
文摘A three-dimensional eutrophication model was applied to assist the management of Dahuofang Reservoir in China.Transport processes were obtained from the three-dimensional,finite volume hydrodynamic model.The hydrodynamic model was verified for a one-year time period in 2006.Our simulation reproduced intra-annual variation of stratification.The simulated variation of vertical thermal structures also matched observations.The water quality model included 8 state variables,including dissolved oxygen,phytoplankton as carbon,carbonaceous biochemical oxygen demand,ammonium nitrogen,nitrate and nitrite nitrogen,ortho-phosphorus,organic nitrogen,and organic phosphorus.Sensitivity of the parameters has been analyzed to decide which process would affect the water quality in the simulation.The water quality verification suggested the model successfully computed the temporal cycles and spatial distributions of key water quality components.The comparison between water quality components before and after the first phase of the water conveyance project suggests that the project has a slight effect on the reservoir ecosystem.The model could be used as a tool to guide physico-biological engineering design or management strategies for Dahuofang Reservoir.