By using the random phase approximation (RPA) in many-body perturbation theory,we calculate thepolarization function of the electron gas in graphene at finite temperature.Based on this,we calculate the temperaturedepe...By using the random phase approximation (RPA) in many-body perturbation theory,we calculate thepolarization function of the electron gas in graphene at finite temperature.Based on this,we calculate the temperaturedependent dielectric function ∈(q).The thermal effect on ∈(q) in various q regions is discussed.The temperaturedependence is found to be quadratic.We also investigate the plasmon dispersion relation at finite temperature,with thezero-temperature relation as a special case.The result is in good agreement with recent experimental data.展开更多
We propose improved ring shaped like potential of the form,V(r,θ)=V(r)+(h^2/2M r^2)[(βsin^2θ+γcos^2θ+2λ)/sinθcosθ]^2 and its exact solutions are presented via the Nikiforov–Uvarov method.The angle ...We propose improved ring shaped like potential of the form,V(r,θ)=V(r)+(h^2/2M r^2)[(βsin^2θ+γcos^2θ+2λ)/sinθcosθ]^2 and its exact solutions are presented via the Nikiforov–Uvarov method.The angle dependent part V(θ)=(h^2/2M r^2)[(βsin^2θ+γcos^2θ+λ)/sinθcosθ]^2,which is reported for the first time embodied the novel angle dependent(NAD)potential and harmonic novel angle dependent potential(HNAD)as special cases.We discuss in detail the effects of the improved ring shaped like potential on the radial parts of the spherical harmonic and Coulomb potentials.展开更多
The Gram-positive bacterium Staphylococcus aureus(S.aureus)is a wide spread common opportunistic pathogen that causes a wide variety of infectious diseases,from benign skin infections to life-threatening diseases such...The Gram-positive bacterium Staphylococcus aureus(S.aureus)is a wide spread common opportunistic pathogen that causes a wide variety of infectious diseases,from benign skin infections to life-threatening diseases such as the methicillin-resistant Staphylococcus aureus(MRSA)infection.Although emerging evidence suggests that lysine acetylation may play critical roles in bacterial physiology,the atlas of acetylome in S.aureus has not been studied.To comprehensively profile protein lysine acetylation in S.aureus,we used an integrated approach that combined immune affinity peptide enrichment using anti-lysine acetylation antibody,high-pH HPLC fractionation,and HPLC/mass spectrometry analysis.This study led to the identification of 1361 non-redundant acetylation sites on 412 proteins found in a search of S.aureus protein database extracted from the Swiss-Prot database.We further performed bioinformatic analysis to characterize this modification,including gene ontology annotation,protein-protein interaction,and domain analysis of the acetylation sites.We found that the acetylated proteins were enriched in multiple biological pathways,such as ribosomal function and energy metabolism.Our data provides a rich source for functional studies of lysine acetylation in S.aureus.展开更多
基金Supported by National Natural Science Foundation of China under Grant No.10474001
文摘By using the random phase approximation (RPA) in many-body perturbation theory,we calculate thepolarization function of the electron gas in graphene at finite temperature.Based on this,we calculate the temperaturedependent dielectric function ∈(q).The thermal effect on ∈(q) in various q regions is discussed.The temperaturedependence is found to be quadratic.We also investigate the plasmon dispersion relation at finite temperature,with thezero-temperature relation as a special case.The result is in good agreement with recent experimental data.
文摘We propose improved ring shaped like potential of the form,V(r,θ)=V(r)+(h^2/2M r^2)[(βsin^2θ+γcos^2θ+2λ)/sinθcosθ]^2 and its exact solutions are presented via the Nikiforov–Uvarov method.The angle dependent part V(θ)=(h^2/2M r^2)[(βsin^2θ+γcos^2θ+λ)/sinθcosθ]^2,which is reported for the first time embodied the novel angle dependent(NAD)potential and harmonic novel angle dependent potential(HNAD)as special cases.We discuss in detail the effects of the improved ring shaped like potential on the radial parts of the spherical harmonic and Coulomb potentials.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2012ZX09301001-007)the National Natural Science Foundation of China(31370814)+1 种基金the Shanghai Pujiang Program(13PJ1410300)the support of China Postdoctoral Science Foundation(2013M531236,2013M541567)
文摘The Gram-positive bacterium Staphylococcus aureus(S.aureus)is a wide spread common opportunistic pathogen that causes a wide variety of infectious diseases,from benign skin infections to life-threatening diseases such as the methicillin-resistant Staphylococcus aureus(MRSA)infection.Although emerging evidence suggests that lysine acetylation may play critical roles in bacterial physiology,the atlas of acetylome in S.aureus has not been studied.To comprehensively profile protein lysine acetylation in S.aureus,we used an integrated approach that combined immune affinity peptide enrichment using anti-lysine acetylation antibody,high-pH HPLC fractionation,and HPLC/mass spectrometry analysis.This study led to the identification of 1361 non-redundant acetylation sites on 412 proteins found in a search of S.aureus protein database extracted from the Swiss-Prot database.We further performed bioinformatic analysis to characterize this modification,including gene ontology annotation,protein-protein interaction,and domain analysis of the acetylation sites.We found that the acetylated proteins were enriched in multiple biological pathways,such as ribosomal function and energy metabolism.Our data provides a rich source for functional studies of lysine acetylation in S.aureus.