期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
弹塑性材料杆的相变分析
1
作者 张义同 谢宇新 任述光 《天津大学学报》 EI CAS CSCD 北大核心 2006年第7期763-767,共5页
针对弹塑性材料的相变问题,对弹塑性杆中的相变分别进行了小变形和大变形分析.分析表明,相变可以在能应变软化的弹塑性杆中发生,相变的Maxwell应力、弹性相和弹塑性相的应变都可以被确定.对任一条假设的应变软化曲线,Maxwell应力直线... 针对弹塑性材料的相变问题,对弹塑性杆中的相变分别进行了小变形和大变形分析.分析表明,相变可以在能应变软化的弹塑性杆中发生,相变的Maxwell应力、弹性相和弹塑性相的应变都可以被确定.对任一条假设的应变软化曲线,Maxwell应力直线和应变软化曲线所围面积的代数和总等于零,这和Ericksen对非线性弹性杆相变研究得到的结论一致.数值算例表明,跨越弹塑性杆相变界面的应变跳越一般很大,这时用小变形分析导致的误差也很大,必须应用大变形理论对弹塑性杆的相变进行分析. 展开更多
关键词 弹塑性 相变 应力功函数 应变软化
下载PDF
Dynamical behaviors of a diffusive predator-prey system with Beddington-DeAngelis functional response 被引量:1
2
作者 Han Er-Dong Guo Peng 《International Journal of Biomathematics》 2014年第3期163-182,共20页
In this paper, we present a diffusive predator prey system with Beddington-DeAngelis funetionM response, where the prey species can disperse between the two patches, and there is competition between the two predators.... In this paper, we present a diffusive predator prey system with Beddington-DeAngelis funetionM response, where the prey species can disperse between the two patches, and there is competition between the two predators. Sufficient conditions for the permanence and extinction of system are established based on the upper and lower solution meth- ods and comparison theory of differential equation. Furthermore, the global asymptotic stability of positive solutions is obtained by constructing a suitable Lyapunov function. By using the continuation theorem in coincidence degree theory, we show the periodicity of positive solutions. Finally, we illustrate global asymptotic stability of the model by a simulation figure. 展开更多
关键词 Beddington-DeAngelis functional response DIFFUSION PERMANENCE extinc-tion periodic solution asymptotic stability.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部