The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A...The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A new constitutive equation during hot deformation was constructed to predict the flow stress considering the dynamic recrystallization. The results show that the flow stress curves predicted by the proposed equation have high correlation coefficients with the experimental data, which confirms that the developed model is accurate and effective to establish the flow stress equation of ZK60 magnesium alloy during hot deformation. Microstructure observation shows that dynamic recovery occurs in the initial stage of hot deformation. However, the microstructure turns to recrvstallization structure as the strain increases.展开更多
The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitat...The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitatively studied through isothermal compression tests.It is found that the dynamic globularization kinetics and the kinetics rate of TA15 are sensitive to deformation parameters.The dynamic globularized fraction increases with increasing strain,temperature but decreasing strain rate.The variation of globularized fraction with strain approximately follows an Avrami type equation.Using the Avrami type equation,the initiation and completion strains for dynamic globularization of TA15 were predicted to be 0.34-0.59 and 3.40-6.80.The kinetics rate of dynamic globularization increases with strain at first,then decreases.The peak value of kinetics rate,which corresponds to 20%-33% globularization fraction,increases with increasing temperature and decreasing strain rate.展开更多
The effects of initial microstructure on the flow stress, strain rate sensitivity (m), strain hardening exponent (n), apparent activation energy (Q) for deformation of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy were investiga...The effects of initial microstructure on the flow stress, strain rate sensitivity (m), strain hardening exponent (n), apparent activation energy (Q) for deformation of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy were investigated using isothermal compression tests. Results show that the alloy with Widmanst-tten alpha plates shows a higher peak stress and flow softening. Additionally, the alloy with equiaxed primary alpha exhibits an early yield drop at or above 810 ℃ and at strain rates of 0.1-5.0 s^-1. In the strain range of 0.5-0.7,m of the alloy with equiaxed primary alpha is found to be larger at 0.01 s^-1 and lower deformation temperatures. This phenomenon could be reasonably explained based on the microstructure evolution. The strain has a significant effect onn of the alloy with Widmanst-tten alpha plates, which is attributed to platelet bending/kinking and dynamic globularization ofα phase. In the strain range of 0.15-0.55,Q of the alloy with Widmanst-tten alpha plates is larger.展开更多
Considering the importance of the prediction of rock burst disasters, and in order to grasp the law of acoustic emission(AE) of coal samples in different dynamic destruction time, the SH-II AE monitoring system was ad...Considering the importance of the prediction of rock burst disasters, and in order to grasp the law of acoustic emission(AE) of coal samples in different dynamic destruction time, the SH-II AE monitoring system was adopted to monitor the failure process of coal samples. The study of the change rule of the AE numbers, energy, ‘b' value and spectrum in the micro crack propagation process of the coal samples shows that as dynamic damage time went by, AE presented high-energy counts and the accumulated counts increased during the compression phase. The AE energy and cumulative counts increased during the elastic stage. The AE blank area increased gradually and the blank lines were more and more obvious in the molding stage. The AE counts and energy showed a trend of decrease in the residual damage phase.AE ‘b' values gradually became sparse, and the large scale cracks percentage compared with micro cracks decreased and the degree of damage decreased. The AE frequency spectrum peak went from the residual damage phase to the molding phase, and finally it was nearly stable, besides the bandwidth of the main frequency is gradually narrowed. Also, the frequency peak changed from single peak frequency to bi-peak frequency and to the single peak frequency. Uniaxial compressive strength is more sensitive than the elastic modulus to dynamic damage time.展开更多
At some stage of a strong earthquake preparation, the focal mechanisms of small earthquakes have roughly the same direction with the tectonic stress field. According to this feature, we define the angle between P, B a...At some stage of a strong earthquake preparation, the focal mechanisms of small earthquakes have roughly the same direction with the tectonic stress field. According to this feature, we define the angle between P, B and T axis of focal mechanisms and the three stress axes of tectonic stress field as the consistency parameter a in studying the dynamic changes of stress fields in earthquake preparation areas. We mainly analyze the changes of the consistency parameter a of the Mw8. 3 Knril island arc earthquake and the Mw8. 4 Peru earthquake. Our study shows that before the strong earthquakes, the earthquake area saw a low consistency, and the focal mechanisms of a series of small earthquakes had small differences in the directions with the tectonic stress field, which means the foreshocks were under the control of the stress field. On the other hand, a higher consistency means the focal mechanisms of their aftershocks are scattered and have big differences in the directions with the tectonic field, which indicate that the control of background stress field starts weakening.展开更多
文摘The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A new constitutive equation during hot deformation was constructed to predict the flow stress considering the dynamic recrystallization. The results show that the flow stress curves predicted by the proposed equation have high correlation coefficients with the experimental data, which confirms that the developed model is accurate and effective to establish the flow stress equation of ZK60 magnesium alloy during hot deformation. Microstructure observation shows that dynamic recovery occurs in the initial stage of hot deformation. However, the microstructure turns to recrvstallization structure as the strain increases.
基金Project(50935007)supported by the National Natural Science Foundation of ChinaProject(2010CB731701)supported by the National Basic Research Program of China
文摘The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitatively studied through isothermal compression tests.It is found that the dynamic globularization kinetics and the kinetics rate of TA15 are sensitive to deformation parameters.The dynamic globularized fraction increases with increasing strain,temperature but decreasing strain rate.The variation of globularized fraction with strain approximately follows an Avrami type equation.Using the Avrami type equation,the initiation and completion strains for dynamic globularization of TA15 were predicted to be 0.34-0.59 and 3.40-6.80.The kinetics rate of dynamic globularization increases with strain at first,then decreases.The peak value of kinetics rate,which corresponds to 20%-33% globularization fraction,increases with increasing temperature and decreasing strain rate.
基金Projects(5120531851275416)supported by the National Natural Science Foundation of ChinaProject(2012KJ02002)supported by the Innovation Fund of Science and Technology in Northwestern Polytechnical University,China
文摘The effects of initial microstructure on the flow stress, strain rate sensitivity (m), strain hardening exponent (n), apparent activation energy (Q) for deformation of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy were investigated using isothermal compression tests. Results show that the alloy with Widmanst-tten alpha plates shows a higher peak stress and flow softening. Additionally, the alloy with equiaxed primary alpha exhibits an early yield drop at or above 810 ℃ and at strain rates of 0.1-5.0 s^-1. In the strain range of 0.5-0.7,m of the alloy with equiaxed primary alpha is found to be larger at 0.01 s^-1 and lower deformation temperatures. This phenomenon could be reasonably explained based on the microstructure evolution. The strain has a significant effect onn of the alloy with Widmanst-tten alpha plates, which is attributed to platelet bending/kinking and dynamic globularization ofα phase. In the strain range of 0.15-0.55,Q of the alloy with Widmanst-tten alpha plates is larger.
基金provided by the National Natural Science Foundation of China (No.51374097)the Science Foundation General Projects of Chinese Postgraduate (No.2014M561384)Key Project of Science and Technology Research of Department of Education in Heilongjiang Province (No.12541z009)
文摘Considering the importance of the prediction of rock burst disasters, and in order to grasp the law of acoustic emission(AE) of coal samples in different dynamic destruction time, the SH-II AE monitoring system was adopted to monitor the failure process of coal samples. The study of the change rule of the AE numbers, energy, ‘b' value and spectrum in the micro crack propagation process of the coal samples shows that as dynamic damage time went by, AE presented high-energy counts and the accumulated counts increased during the compression phase. The AE energy and cumulative counts increased during the elastic stage. The AE blank area increased gradually and the blank lines were more and more obvious in the molding stage. The AE counts and energy showed a trend of decrease in the residual damage phase.AE ‘b' values gradually became sparse, and the large scale cracks percentage compared with micro cracks decreased and the degree of damage decreased. The AE frequency spectrum peak went from the residual damage phase to the molding phase, and finally it was nearly stable, besides the bandwidth of the main frequency is gradually narrowed. Also, the frequency peak changed from single peak frequency to bi-peak frequency and to the single peak frequency. Uniaxial compressive strength is more sensitive than the elastic modulus to dynamic damage time.
基金sponsored by the Basic Science and Technology Programme of the Institute of Earthquake Science(0207690205),China Earth quake Administration
文摘At some stage of a strong earthquake preparation, the focal mechanisms of small earthquakes have roughly the same direction with the tectonic stress field. According to this feature, we define the angle between P, B and T axis of focal mechanisms and the three stress axes of tectonic stress field as the consistency parameter a in studying the dynamic changes of stress fields in earthquake preparation areas. We mainly analyze the changes of the consistency parameter a of the Mw8. 3 Knril island arc earthquake and the Mw8. 4 Peru earthquake. Our study shows that before the strong earthquakes, the earthquake area saw a low consistency, and the focal mechanisms of a series of small earthquakes had small differences in the directions with the tectonic stress field, which means the foreshocks were under the control of the stress field. On the other hand, a higher consistency means the focal mechanisms of their aftershocks are scattered and have big differences in the directions with the tectonic field, which indicate that the control of background stress field starts weakening.