Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sin...Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.展开更多
A modified MK model combined with ductile fracture criterion(DFC-MK model) is proposed to compute the forming limit diagrams(FLDs) of 5A06-O aluminum alloy sheet at different temperatures.The material constant(C...A modified MK model combined with ductile fracture criterion(DFC-MK model) is proposed to compute the forming limit diagrams(FLDs) of 5A06-O aluminum alloy sheet at different temperatures.The material constant(C) of ductile fracture criterion and initial thickness imperfection parameter(f0) at various temperatures are determined by using a new computing method based on wide sheet bending test.The FLDs at 20 and 200 °C are calculated through the DFC-MK model.The DFC-MK model,which includes the influence of through-thickness normal stress,is written into the subroutine VUMAT embedded in Abaqus/ Explicit.The cylindrical cup hydroforming tests are carried out to verify the model.The results show that compared with experimental observations,the predicted FLDs based on DFC-MK model are more accurate than the conventional MK model;the errors between the simulations and experiments in warm hydroforming are 8.23% at 20 °C and 9.24% at 200 °C,which verify the effectiveness of the proposed model.展开更多
In the background of the technology condition and the geological condition of the 1151(3) fully mechanized top-coal caving face (FMTC face), and by means of taking nonlinear 3D numerical simulation, the stress red...In the background of the technology condition and the geological condition of the 1151(3) fully mechanized top-coal caving face (FMTC face), and by means of taking nonlinear 3D numerical simulation, the stress redistribution rules of top coal with different thick coal seam were obtained by investigation on the numerical simulation of the redistributions of the stress with different coal seam's thickness. The research showes that there exists a certain difference on the stress distributions of the top coal at face, the maximum principal stress is located near to the tailentry's corner. The vertical stress's peak of the top coal decreases and the distance ahead of face position increases as the once mining thickness of the coal seam increases. At the same coal seam, the vertical stresses' peak of top coal gradually decreases from the top to the bottom, the peak's position is basically the same and its changes are gradually obvious with the thickness of coal seam increas- ing. The vertical stress of top coal places in a low stress state at a certain range ahead of face and over the face, which reveals the essence that the support loads are generally low under the condition of FMTC. The study supplies the theoretical foundation for the support design and selection, the theory of top coal's fragmentation, the movement rules of top coal and improving the recovery of top coal.展开更多
The effect of deficiency in tunnel crown thickness on the Yellow River Crossing Tunnel with post-tensioned concrete inner lining was investigated by the elasto-plastic finite element method. Changes in the deformation...The effect of deficiency in tunnel crown thickness on the Yellow River Crossing Tunnel with post-tensioned concrete inner lining was investigated by the elasto-plastic finite element method. Changes in the deformations and circumferential stresses of the post-tensioned concrete inner lining with the gradual decrease of the tunnel crown thickness were compared, and the potential bearing risk of insufficient tunnel crown thickness for the Yellow River Crossing Tunnel was revealed. Based on the finite element calculation results of circumferential stresses under different defective cases, the corresponding reinforcement schemes were proposed. The calculation results show that the inner lining can still maintain a satisfactory stress state when the tunnel crown thickness is equal to or greater than 0. 28 m. When the tunnel crown thickness decreases below 0.28 m, the external surface of the crown and internal surface of the crown's adjacent areas may be under tension. The tension stresses will incrementally increase and ultimately exceed the tensile strength of the inner lining concrete as the tunnel crown thickness further decreases gradually. Then, the Yellow River Crossing Tunnel cannot operate normally, and severe cracking, leaking or even failure may occur. When the tunnel crown thickness is equal to or greater than 0.28 m, the reinforcement suggestions are that the void spaces between the inner lining and the outer lining should be back-filled with concrete. When the tunnel crown thickness is less than 0. 28 m, the inner lining should be reinforced by steel plates after concrete back-filling.展开更多
A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing...A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle.展开更多
The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of...The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase.展开更多
A novel experimental approach was presented, namely the overlapping elliptical bulge test, which can load and research thickness normal stress. Theoretical analysis model of the overlapping elliptical bulging was desc...A novel experimental approach was presented, namely the overlapping elliptical bulge test, which can load and research thickness normal stress. Theoretical analysis model of the overlapping elliptical bulging was described, the equivalent stress?strain curves of target sheets with different ellipticity ratios were determined experimentally, and influences of the material performance and thickness of overlapping sheets on the flow property of the target sheet were also researched. The results show that, in the overlapping hydraulic bulge test, the equivalent stress?strain curve can be determined up to larger strains before necking than in the no overlapping hydraulic bulge test. And as the die ellipticity ratio decreases, the flow stress curves tend to move away from the curve obtained by circular (b/a=1) bulging test. Meanwhile, the flow property of the target sheet can be improved by choosing higher strength coefficient K, larger work hardening exponent n and proper thickness of the overlapping sheet.展开更多
This paper reviews underground mining methods for total thickness of a thick coal seam in single lift (TI'rCSSL). Review shows the required engineering for extraction of thick seams needs to be fitted with thicknes...This paper reviews underground mining methods for total thickness of a thick coal seam in single lift (TI'rCSSL). Review shows the required engineering for extraction of thick seams needs to be fitted with thickness of the seam, behavior of rock-mass and surrounding stress conditions for efficient mining. Variants of TI'rCSSL are able to extract a maximum 10-12 m thickness only. An improvement in bending moment of the overlying coal band in longwall top coal caving (LTCC) provides better under-winning opportunity for the roof coal band. An acceptable limit of 25 MPa compressive strength of coal for the success of LTCC may be increased under favorable geo-technical conditions. Bord and pillar in India adopted induced caving of roof coal band for single lift depillaring of total thickness (SLDTr) of a compe- tent thick coal seam developed along floor. Case studies are given to arrest the adverse effects of extrac- tion height on pillars.展开更多
The distribution and magnitude of surface substrates were investigated by finite element method and subsurface stresses of the (FEM). The models of coating single-layer sprayed-coatings on monolithic configurations ...The distribution and magnitude of surface substrates were investigated by finite element method and subsurface stresses of the (FEM). The models of coating single-layer sprayed-coatings on monolithic configurations with different thicknesses and elastic modulus ratios of coating to substrate were introduced, and the effects of thickness and elastic modulus ratio on the stresses were addressed. The calculation results show that the coating/substrate interface shear stress obviously decreases with increasing coating thickness, due to the location of the maximum shear stress moving away from the coating/substrate interface. At the same time, the magnitude of von Mises stress also declines in the case of thicker coatings. However, the high elastic modulus ratio results in extremely high maximum shear stress and the severe discontinuity of the von Mises stress curves, which leads to the intensive stress concentration on the coating/substrate interface. So the coating configurations with the larger coating thickness and lower difference of elastic modulus between coating and substrate exhibit excellent resistant performance of rolling contact fatigue (RCF).展开更多
This paper was to validate the effects of airfoil thickness ratio on the characteristics of a family of airfoils. Research was carried out in different ways. First,tests were conducted in the wind tunnel. And numerica...This paper was to validate the effects of airfoil thickness ratio on the characteristics of a family of airfoils. Research was carried out in different ways. First,tests were conducted in the wind tunnel. And numerical simulation was performed on the basis of tests. Results from calculation were consistent with tests,indicating that numerical method could help evaluate characteristics of airfoils. Then the results were confirmed by compared with empirical data. The study also showed that the determining factor of lift is not only the thickness ratio,but the angle of attack,the relative camber and the camber line. The thickness ratio appears to have little effect on lift coefficient at zero angle of attack,since the angle of zero lift is largely determined by the airfoil camber. According to the research,numerical simulation can be used to determine the aerodynamic characteristics of airfoils in different environment such as in the dusty or humid air.展开更多
In order to explore the influence of different caving thicknesses on the MSS distributionand evolving characteristics of surrounding rocks in unsymmetrical disposal andfully mechanized top-coal caving (FMTC),based on ...In order to explore the influence of different caving thicknesses on the MSS distributionand evolving characteristics of surrounding rocks in unsymmetrical disposal andfully mechanized top-coal caving (FMTC),based on unsymmetrical disposal characteristics,the analyses of numerical simulation,material simulation and in-situ observation weresynthetically applied according to the geological and technical conditions of the 1151(3)working face in Xieqiao Mine.The results show that the stress peak value of the MSS-baseand the ratio of MSS-body height to caving thickness are nonlinear and inverselyproportional to the caving thickness.The MSS-base width,the MSS-body height,theMSS-base distance to working face wall and the rise distance of MSS-base beside coalpillar are nonlinear and directly proportional to the caving thickness.The characteristics ofMSS distribution and its evolving rules of surrounding rocks and the integrated cavingthickness effects are obtained.The investigations will provide lots of theoretic referencesto the surrounding rocks' stability control of the working face and roadway,roadway layout,gas extraction and exploitation,and efficiency of caving,etc.展开更多
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness.
基金Project(51175024)supported by the National Natural Science Foundation of China
文摘A modified MK model combined with ductile fracture criterion(DFC-MK model) is proposed to compute the forming limit diagrams(FLDs) of 5A06-O aluminum alloy sheet at different temperatures.The material constant(C) of ductile fracture criterion and initial thickness imperfection parameter(f0) at various temperatures are determined by using a new computing method based on wide sheet bending test.The FLDs at 20 and 200 °C are calculated through the DFC-MK model.The DFC-MK model,which includes the influence of through-thickness normal stress,is written into the subroutine VUMAT embedded in Abaqus/ Explicit.The cylindrical cup hydroforming tests are carried out to verify the model.The results show that compared with experimental observations,the predicted FLDs based on DFC-MK model are more accurate than the conventional MK model;the errors between the simulations and experiments in warm hydroforming are 8.23% at 20 °C and 9.24% at 200 °C,which verify the effectiveness of the proposed model.
文摘In the background of the technology condition and the geological condition of the 1151(3) fully mechanized top-coal caving face (FMTC face), and by means of taking nonlinear 3D numerical simulation, the stress redistribution rules of top coal with different thick coal seam were obtained by investigation on the numerical simulation of the redistributions of the stress with different coal seam's thickness. The research showes that there exists a certain difference on the stress distributions of the top coal at face, the maximum principal stress is located near to the tailentry's corner. The vertical stress's peak of the top coal decreases and the distance ahead of face position increases as the once mining thickness of the coal seam increases. At the same coal seam, the vertical stresses' peak of top coal gradually decreases from the top to the bottom, the peak's position is basically the same and its changes are gradually obvious with the thickness of coal seam increas- ing. The vertical stress of top coal places in a low stress state at a certain range ahead of face and over the face, which reveals the essence that the support loads are generally low under the condition of FMTC. The study supplies the theoretical foundation for the support design and selection, the theory of top coal's fragmentation, the movement rules of top coal and improving the recovery of top coal.
基金The Natural Science Foundation of Hubei Province(No.2017CFB667)the National Natural Science Foundation of China(No.51079107)
文摘The effect of deficiency in tunnel crown thickness on the Yellow River Crossing Tunnel with post-tensioned concrete inner lining was investigated by the elasto-plastic finite element method. Changes in the deformations and circumferential stresses of the post-tensioned concrete inner lining with the gradual decrease of the tunnel crown thickness were compared, and the potential bearing risk of insufficient tunnel crown thickness for the Yellow River Crossing Tunnel was revealed. Based on the finite element calculation results of circumferential stresses under different defective cases, the corresponding reinforcement schemes were proposed. The calculation results show that the inner lining can still maintain a satisfactory stress state when the tunnel crown thickness is equal to or greater than 0. 28 m. When the tunnel crown thickness decreases below 0.28 m, the external surface of the crown and internal surface of the crown's adjacent areas may be under tension. The tension stresses will incrementally increase and ultimately exceed the tensile strength of the inner lining concrete as the tunnel crown thickness further decreases gradually. Then, the Yellow River Crossing Tunnel cannot operate normally, and severe cracking, leaking or even failure may occur. When the tunnel crown thickness is equal to or greater than 0.28 m, the reinforcement suggestions are that the void spaces between the inner lining and the outer lining should be back-filled with concrete. When the tunnel crown thickness is less than 0. 28 m, the inner lining should be reinforced by steel plates after concrete back-filling.
文摘A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle.
文摘The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase.
基金Project(2014ZX04002041)supported by the National Science and Technology Major Project,ChinaProject(51175024)supported by the National Natural Science Foundation of China
文摘A novel experimental approach was presented, namely the overlapping elliptical bulge test, which can load and research thickness normal stress. Theoretical analysis model of the overlapping elliptical bulging was described, the equivalent stress?strain curves of target sheets with different ellipticity ratios were determined experimentally, and influences of the material performance and thickness of overlapping sheets on the flow property of the target sheet were also researched. The results show that, in the overlapping hydraulic bulge test, the equivalent stress?strain curve can be determined up to larger strains before necking than in the no overlapping hydraulic bulge test. And as the die ellipticity ratio decreases, the flow stress curves tend to move away from the curve obtained by circular (b/a=1) bulging test. Meanwhile, the flow property of the target sheet can be improved by choosing higher strength coefficient K, larger work hardening exponent n and proper thickness of the overlapping sheet.
基金funded by the Singareni Collieries Company Limited (SCCL)the support of Department of Mining Engineering, ISM for making use of different facilities
文摘This paper reviews underground mining methods for total thickness of a thick coal seam in single lift (TI'rCSSL). Review shows the required engineering for extraction of thick seams needs to be fitted with thickness of the seam, behavior of rock-mass and surrounding stress conditions for efficient mining. Variants of TI'rCSSL are able to extract a maximum 10-12 m thickness only. An improvement in bending moment of the overlying coal band in longwall top coal caving (LTCC) provides better under-winning opportunity for the roof coal band. An acceptable limit of 25 MPa compressive strength of coal for the success of LTCC may be increased under favorable geo-technical conditions. Bord and pillar in India adopted induced caving of roof coal band for single lift depillaring of total thickness (SLDTr) of a compe- tent thick coal seam developed along floor. Case studies are given to arrest the adverse effects of extrac- tion height on pillars.
基金Project(2007AA04Z408) supported by the National High-Tech Research and Development Program of ChinaProject(50735006) supported by the National Natural Science Foundation of China
文摘The distribution and magnitude of surface substrates were investigated by finite element method and subsurface stresses of the (FEM). The models of coating single-layer sprayed-coatings on monolithic configurations with different thicknesses and elastic modulus ratios of coating to substrate were introduced, and the effects of thickness and elastic modulus ratio on the stresses were addressed. The calculation results show that the coating/substrate interface shear stress obviously decreases with increasing coating thickness, due to the location of the maximum shear stress moving away from the coating/substrate interface. At the same time, the magnitude of von Mises stress also declines in the case of thicker coatings. However, the high elastic modulus ratio results in extremely high maximum shear stress and the severe discontinuity of the von Mises stress curves, which leads to the intensive stress concentration on the coating/substrate interface. So the coating configurations with the larger coating thickness and lower difference of elastic modulus between coating and substrate exhibit excellent resistant performance of rolling contact fatigue (RCF).
文摘This paper was to validate the effects of airfoil thickness ratio on the characteristics of a family of airfoils. Research was carried out in different ways. First,tests were conducted in the wind tunnel. And numerical simulation was performed on the basis of tests. Results from calculation were consistent with tests,indicating that numerical method could help evaluate characteristics of airfoils. Then the results were confirmed by compared with empirical data. The study also showed that the determining factor of lift is not only the thickness ratio,but the angle of attack,the relative camber and the camber line. The thickness ratio appears to have little effect on lift coefficient at zero angle of attack,since the angle of zero lift is largely determined by the airfoil camber. According to the research,numerical simulation can be used to determine the aerodynamic characteristics of airfoils in different environment such as in the dusty or humid air.
基金Supported by National Basic Research Program(973)(2005cb221503)National Natural Science Foundation of China(50674003)Science and Technological Fund of Anhui Province for Outstanding Youth(08040106839)
文摘In order to explore the influence of different caving thicknesses on the MSS distributionand evolving characteristics of surrounding rocks in unsymmetrical disposal andfully mechanized top-coal caving (FMTC),based on unsymmetrical disposal characteristics,the analyses of numerical simulation,material simulation and in-situ observation weresynthetically applied according to the geological and technical conditions of the 1151(3)working face in Xieqiao Mine.The results show that the stress peak value of the MSS-baseand the ratio of MSS-body height to caving thickness are nonlinear and inverselyproportional to the caving thickness.The MSS-base width,the MSS-body height,theMSS-base distance to working face wall and the rise distance of MSS-base beside coalpillar are nonlinear and directly proportional to the caving thickness.The characteristics ofMSS distribution and its evolving rules of surrounding rocks and the integrated cavingthickness effects are obtained.The investigations will provide lots of theoretic referencesto the surrounding rocks' stability control of the working face and roadway,roadway layout,gas extraction and exploitation,and efficiency of caving,etc.