The reverse snapback phenomena (RSP) on I-V characteristics of static induction thyristors (SITH) are physically researched. The I-V curves of the power SITH exhibit reverse snapback phenomena, and even turn to th...The reverse snapback phenomena (RSP) on I-V characteristics of static induction thyristors (SITH) are physically researched. The I-V curves of the power SITH exhibit reverse snapback phenomena, and even turn to the conducting-state,when the anode voltage in the forward blocking-state is increased to a critical value. The RSP I-V characteristics of the power SITH are analyzed in terms of operating mechanism, double carrier injection effect, space charge effect, electron-hole plasma in the channel, and the variation in carrier lifetime. The reverse snapback mechanism is theoretically pro- posed and the mathematical expressions to calculate the voltage and current values at the snapback point are presented. The computing results are compared with the experiment values.展开更多
A new kinetic model for commercial unit of toluene disproportionation and C9-armatiocs transalkylation is developed based on the reported reaction scheme.A time based catalyst deactivation function taking weight hourl...A new kinetic model for commercial unit of toluene disproportionation and C9-armatiocs transalkylation is developed based on the reported reaction scheme.A time based catalyst deactivation function taking weight hourly space velocity(WHSV)into account is incorporated into the model,which reasonably accounts for the loss in activity because of coke deposition on the surface of catalyst during long-term operation.The kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential variable metric optimiza- tion method.Sets of plant data at different operating conditions are applied to make sure validation of the model and the results show a good agreement between the model predictions and plant observations.The simulation analysis of key variables such as temperature and WHSV affecting process performance is discussed in detail,giv- ing the guidance to select suitable operating conditions.展开更多
Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigate...Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.展开更多
The reaction kinetics of roasting zinc silicate using NaOH was investigated.The orthogonal test was employed to optimize the reaction conditions and the optimized reaction conditions were as follows:molar ratio of NaO...The reaction kinetics of roasting zinc silicate using NaOH was investigated.The orthogonal test was employed to optimize the reaction conditions and the optimized reaction conditions were as follows:molar ratio of NaOH to Zn2SiO4 of 16:1,reaction temperature of 550°C,and reaction time of 2.5 h.In order to ascertain the phases transformation and reaction processes of zinc oxide and silica,the XRD phase analysis was used to analyze the phases of these specimens roasted at different temperatures.The final phases of the specimen roasted at 600°C were Na2ZnO2,Na4SiO4,Na2ZnSiO4 and NaOH.The reaction kinetic equation of roasting was determined by the shrinking unreacted core model.Aiming to investigate the reaction mechanism,two control models of reaction rate were applied:chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the diffusion through the product layer model described the reaction process well.The apparent activation energy of the roasting was 19.77 kJ/mol.展开更多
In this paper, the propene oligomerization reaction catalyzed by phosphotungstic acid supported on two kinds of silica gel was studied, it had been found out that the conversion of propene catalyzed by the type A sili...In this paper, the propene oligomerization reaction catalyzed by phosphotungstic acid supported on two kinds of silica gel was studied, it had been found out that the conversion of propene catalyzed by the type A silica gel-phosphotung- stic acid catalyst was 3.38 m%, while the conversion of propene catalyzed by the type B silica gel-phosphotungstic acid catalyst was 90.1 m% with a nonene selectivity of 42.33 m%, and a dodecene selectivity of 31.79 m%. The influence of reaction temperature, pressure and liquid hourly space velocity (LHSV) on the reaction catalyzed by the type B silica gel- phosphotungstic acid catalyst was investigated. It had been verified that when the reaction temperature increased from 170 ~C to 190 ~C, the conversion of propene increased while the selectivity of nonene and dodecene decreased; when the re- action pressure increased from 3.5 MPa to 4.5 MPa, the conversion of propene increased also, and the selectivity of nonene and dodecene changed very little. The conversion of propene at a space velocity of between 0.5 h-1 and 1.0 h-~ was higher than that achieved at 2.0 h-~, but the selectivity of nonene and dodecene did not show regular fluctuations. An optimum conversion of propene (91.05 m%) and an optimum selectivity of nonene and dodecene (89.51 m%) could be achieved at a reaction temperature of 170 ~C, a reaction pressure of 4.5MPa, and a LHSV of 1.0 fit. The experiments on catalyst life showed that the activity of the type B silica gel-phosphotungstic acid catalyst could be only maintained in 25 hours, and the reason was explained also.展开更多
Conversion of SrSO4 to acidic strontium oxalate hydrate(H[Sr(C2O4)1.5(H2O)]) in aqueous H2C2O4 solutions proceeds as a consecutive reaction. In the first step of the consecutive reaction, SrSO4 reacts with H2C2O4 and ...Conversion of SrSO4 to acidic strontium oxalate hydrate(H[Sr(C2O4)1.5(H2O)]) in aqueous H2C2O4 solutions proceeds as a consecutive reaction. In the first step of the consecutive reaction, SrSO4 reacts with H2C2O4 and pseudomorphic conversion to SrC2 O4·H2O occurs. In the second step, SrC2 O4·H2O reacts with H2C2O4 to form H[Sr(C2 O4)1.5(H2O)]. Sr(HC2 O4)(C2 O4)0.5·H2 O crystallizes during cooling of the reaction mixture to room temperature if the solution reaches the saturation concentration of (H[Sr(C2O4)1.5(H2O)]. The aims of this study are the derivation of reaction rate equations and the determination of the kinetic parameters such as pre-exponential factor, apparent activation energy and order of H2C2O4 concentration for each reaction step.Fractional conversions of SrSO4 were calculated using the quantitative amounts of dissolved S and Sr. It was determined that the reaction rate increased at the initial time of reaction by increasing the temperature using solutions with approximately same H2C2O4 concentrations. The reaction extends very slowly after a certain time in solutions with low H2C2O4 concentration and ends by the formation of a protective layer of SrC2O4-H2O around the surfaces of solid particles. Fractional conversion of SrSO4 is increased by increasing concentration of H2C2O4 at constant temperature. Kinetic model equations were derived using shrinking core model for each step.展开更多
Using the focal mechanism solutions of 24 moderately strong earthquakes in the northern Tianshan area,we carried out system cluster and stress field inversion analysis.The result indicates that,the focal mechanism sol...Using the focal mechanism solutions of 24 moderately strong earthquakes in the northern Tianshan area,we carried out system cluster and stress field inversion analysis.The result indicates that,the focal mechanism solutions of moderately strong earthquakes are mainly dip-slip reverse faulting in the northern Tianshan area.The principal rupture planes of earthquakes are NW-oriented.It is basically consistent with the strike of earthquake structure in its adjacent area.The direction of the principal compression stress P axis is nearly NS,and its inclination angle is small;while the inclination angle of the principal extensional stress T axis is large.It shows that the regional stress field is mainly controlled by the near-NS horizontal compressive stress.The direction of the maximum principal stress shows a gradation process of NNE-NS-NW from east to west.展开更多
Special proton-gradient-transfer acid complexes (PGTACs) in which the bonded protons are not equivalent and have gradients in transfer ability, acidity, and reactivity were reported. The acidity gradient of the prot...Special proton-gradient-transfer acid complexes (PGTACs) in which the bonded protons are not equivalent and have gradients in transfer ability, acidity, and reactivity were reported. The acidity gradient of the protons gave the PGTACs excellent catalytic activity and selectivity in the esterifica- tion of terpenols. These PGTACs are "reaction-induced self-separation catalysts" and can be easily reused. The kinetics with PGTACs as catalyst in the esterification of geraniol were also studied for use in engineering design.展开更多
文摘The reverse snapback phenomena (RSP) on I-V characteristics of static induction thyristors (SITH) are physically researched. The I-V curves of the power SITH exhibit reverse snapback phenomena, and even turn to the conducting-state,when the anode voltage in the forward blocking-state is increased to a critical value. The RSP I-V characteristics of the power SITH are analyzed in terms of operating mechanism, double carrier injection effect, space charge effect, electron-hole plasma in the channel, and the variation in carrier lifetime. The reverse snapback mechanism is theoretically pro- posed and the mathematical expressions to calculate the voltage and current values at the snapback point are presented. The computing results are compared with the experiment values.
基金Supported by the National'Creative Research Groups Science Foundation of China (No.60421002) and priority supported financially by "the New Century 151 Talent Project" of Zhejiang Province.
文摘A new kinetic model for commercial unit of toluene disproportionation and C9-armatiocs transalkylation is developed based on the reported reaction scheme.A time based catalyst deactivation function taking weight hourly space velocity(WHSV)into account is incorporated into the model,which reasonably accounts for the loss in activity because of coke deposition on the surface of catalyst during long-term operation.The kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential variable metric optimiza- tion method.Sets of plant data at different operating conditions are applied to make sure validation of the model and the results show a good agreement between the model predictions and plant observations.The simulation analysis of key variables such as temperature and WHSV affecting process performance is discussed in detail,giv- ing the guidance to select suitable operating conditions.
基金Projects(51874071,52022019,51734005)supported by the National Natural Science Foundation of ChinaProject(161045)supported by the Fok Ying Tung Education Foundation for Yong Teachers in the Higher Education Institutions of China。
文摘Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.
基金Projects(51774070,51204054)supported by the National Natural Science Foundation of ChinaProject(150204009)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2014CB643405)supported by the National Basic Research Program of China
文摘The reaction kinetics of roasting zinc silicate using NaOH was investigated.The orthogonal test was employed to optimize the reaction conditions and the optimized reaction conditions were as follows:molar ratio of NaOH to Zn2SiO4 of 16:1,reaction temperature of 550°C,and reaction time of 2.5 h.In order to ascertain the phases transformation and reaction processes of zinc oxide and silica,the XRD phase analysis was used to analyze the phases of these specimens roasted at different temperatures.The final phases of the specimen roasted at 600°C were Na2ZnO2,Na4SiO4,Na2ZnSiO4 and NaOH.The reaction kinetic equation of roasting was determined by the shrinking unreacted core model.Aiming to investigate the reaction mechanism,two control models of reaction rate were applied:chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the diffusion through the product layer model described the reaction process well.The apparent activation energy of the roasting was 19.77 kJ/mol.
文摘In this paper, the propene oligomerization reaction catalyzed by phosphotungstic acid supported on two kinds of silica gel was studied, it had been found out that the conversion of propene catalyzed by the type A silica gel-phosphotung- stic acid catalyst was 3.38 m%, while the conversion of propene catalyzed by the type B silica gel-phosphotungstic acid catalyst was 90.1 m% with a nonene selectivity of 42.33 m%, and a dodecene selectivity of 31.79 m%. The influence of reaction temperature, pressure and liquid hourly space velocity (LHSV) on the reaction catalyzed by the type B silica gel- phosphotungstic acid catalyst was investigated. It had been verified that when the reaction temperature increased from 170 ~C to 190 ~C, the conversion of propene increased while the selectivity of nonene and dodecene decreased; when the re- action pressure increased from 3.5 MPa to 4.5 MPa, the conversion of propene increased also, and the selectivity of nonene and dodecene changed very little. The conversion of propene at a space velocity of between 0.5 h-1 and 1.0 h-~ was higher than that achieved at 2.0 h-~, but the selectivity of nonene and dodecene did not show regular fluctuations. An optimum conversion of propene (91.05 m%) and an optimum selectivity of nonene and dodecene (89.51 m%) could be achieved at a reaction temperature of 170 ~C, a reaction pressure of 4.5MPa, and a LHSV of 1.0 fit. The experiments on catalyst life showed that the activity of the type B silica gel-phosphotungstic acid catalyst could be only maintained in 25 hours, and the reason was explained also.
基金the financial support of the Scientific Research Projects Coordination Unit of Istanbul University (Project number: 17344 and 31088)
文摘Conversion of SrSO4 to acidic strontium oxalate hydrate(H[Sr(C2O4)1.5(H2O)]) in aqueous H2C2O4 solutions proceeds as a consecutive reaction. In the first step of the consecutive reaction, SrSO4 reacts with H2C2O4 and pseudomorphic conversion to SrC2 O4·H2O occurs. In the second step, SrC2 O4·H2O reacts with H2C2O4 to form H[Sr(C2 O4)1.5(H2O)]. Sr(HC2 O4)(C2 O4)0.5·H2 O crystallizes during cooling of the reaction mixture to room temperature if the solution reaches the saturation concentration of (H[Sr(C2O4)1.5(H2O)]. The aims of this study are the derivation of reaction rate equations and the determination of the kinetic parameters such as pre-exponential factor, apparent activation energy and order of H2C2O4 concentration for each reaction step.Fractional conversions of SrSO4 were calculated using the quantitative amounts of dissolved S and Sr. It was determined that the reaction rate increased at the initial time of reaction by increasing the temperature using solutions with approximately same H2C2O4 concentrations. The reaction extends very slowly after a certain time in solutions with low H2C2O4 concentration and ends by the formation of a protective layer of SrC2O4-H2O around the surfaces of solid particles. Fractional conversion of SrSO4 is increased by increasing concentration of H2C2O4 at constant temperature. Kinetic model equations were derived using shrinking core model for each step.
基金sponsored by the Subject of City ActiveFault Exploration Program of Urumqi and Joint Foundation of Earthquake Administration of Xinjiang Uygur Autonomous Region (200704),China
文摘Using the focal mechanism solutions of 24 moderately strong earthquakes in the northern Tianshan area,we carried out system cluster and stress field inversion analysis.The result indicates that,the focal mechanism solutions of moderately strong earthquakes are mainly dip-slip reverse faulting in the northern Tianshan area.The principal rupture planes of earthquakes are NW-oriented.It is basically consistent with the strike of earthquake structure in its adjacent area.The direction of the principal compression stress P axis is nearly NS,and its inclination angle is small;while the inclination angle of the principal extensional stress T axis is large.It shows that the regional stress field is mainly controlled by the near-NS horizontal compressive stress.The direction of the maximum principal stress shows a gradation process of NNE-NS-NW from east to west.
基金supported by the National Natural Science Foundation of China (21376115, 21576129)~~
文摘Special proton-gradient-transfer acid complexes (PGTACs) in which the bonded protons are not equivalent and have gradients in transfer ability, acidity, and reactivity were reported. The acidity gradient of the protons gave the PGTACs excellent catalytic activity and selectivity in the esterifica- tion of terpenols. These PGTACs are "reaction-induced self-separation catalysts" and can be easily reused. The kinetics with PGTACs as catalyst in the esterification of geraniol were also studied for use in engineering design.