Based on the engineering project on a small coal pillar of 12,521 working face roadway in Xieqiao Coalmine, data regarding surface displacements of the coal pillar, deep displacements and mining stress have been colle...Based on the engineering project on a small coal pillar of 12,521 working face roadway in Xieqiao Coalmine, data regarding surface displacements of the coal pillar, deep displacements and mining stress have been collected and analyzed. The results show that macroscopic transverse fractures of the inner coal pillar are developed within 2–4 m of the roadway surface, which is located outside the coal pillar anchorage zone. There is a displacement of 530 mm at the monitoring point in the 6 m deep zone of the pillar. Transfer of the fracture zone is found in a small coal pillar and the fractures within 3–4 m of the coal-rock zone from the roadway surface undergo propagation and closure of cracks which means this fracture zone is transferred from 3–4 m outside the roadway to only 2–3 m from the roadway surface. In the monitoring zone, vertical and horizontal stresses increase with a feature that shows that acceleration in the deep zone of the pillar is greater than that in the shallow zone. Furthermore, the acceleration of vertical stress is also greater than that of horizontal stress with a peak value in the 4 m zone.The research findings provide a reference for the regulation of a reasonable width of coal pillar in coalmines and optimal control design of surrounding rock.展开更多
There were for a long time two invariant forms of hydrodynamic equations: one was related to coordinate system of references, and the other was versus to measure units of characteristics. These both invariant forms h...There were for a long time two invariant forms of hydrodynamic equations: one was related to coordinate system of references, and the other was versus to measure units of characteristics. These both invariant forms had important roles in the development of theoretical and practical applications of hydro-aerodynamics and related industries. The third invariant form of hydrodynamic equations is one for the dimensions of spaces. For this goal, the hyper quantities (space and physics) are introduced. Then these are created we can easily cover all problems in arbitrary dimensions (3D, 2D, 1D, separate space for liquids or constituent matters). In particularly, when they are applied to water hammer problem, which is an especially problem, we can receive immediately celerity and pressure of the event.展开更多
基金the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1084)the Open Fund of Hunan provincial Key Laboratory for Safe Mining Technology of Coal Mine (No. 201103)the National Natural Science Foundation of China (No. 51274193)
文摘Based on the engineering project on a small coal pillar of 12,521 working face roadway in Xieqiao Coalmine, data regarding surface displacements of the coal pillar, deep displacements and mining stress have been collected and analyzed. The results show that macroscopic transverse fractures of the inner coal pillar are developed within 2–4 m of the roadway surface, which is located outside the coal pillar anchorage zone. There is a displacement of 530 mm at the monitoring point in the 6 m deep zone of the pillar. Transfer of the fracture zone is found in a small coal pillar and the fractures within 3–4 m of the coal-rock zone from the roadway surface undergo propagation and closure of cracks which means this fracture zone is transferred from 3–4 m outside the roadway to only 2–3 m from the roadway surface. In the monitoring zone, vertical and horizontal stresses increase with a feature that shows that acceleration in the deep zone of the pillar is greater than that in the shallow zone. Furthermore, the acceleration of vertical stress is also greater than that of horizontal stress with a peak value in the 4 m zone.The research findings provide a reference for the regulation of a reasonable width of coal pillar in coalmines and optimal control design of surrounding rock.
文摘There were for a long time two invariant forms of hydrodynamic equations: one was related to coordinate system of references, and the other was versus to measure units of characteristics. These both invariant forms had important roles in the development of theoretical and practical applications of hydro-aerodynamics and related industries. The third invariant form of hydrodynamic equations is one for the dimensions of spaces. For this goal, the hyper quantities (space and physics) are introduced. Then these are created we can easily cover all problems in arbitrary dimensions (3D, 2D, 1D, separate space for liquids or constituent matters). In particularly, when they are applied to water hammer problem, which is an especially problem, we can receive immediately celerity and pressure of the event.