Within the framework of nonlinear eleetroelasticity, the stress field near to the crack tip in an infinite piezoelectric media subject to a far field uniform loading is studied by using an electrical strip saturation ...Within the framework of nonlinear eleetroelasticity, the stress field near to the crack tip in an infinite piezoelectric media subject to a far field uniform loading is studied by using an electrical strip saturation model and the complex variable method. And the emphasis is placed on the stress field near to the crack tip. The obtained solutions show that the normalized stress components at an arbitrary point near to the crack tip are determined by the angle of the point. Moreover, the stress components are independent of the distance from the point to the ori- gin of the coordinate. The distributions of in-plane stress components near to the crack tip are analyzed based on numerical results for PZT-SH. Compared with some related solutions, results show that the solutions are valid.展开更多
The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A...The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A/SSSS) were studied by performing numerical stress analysis on blocks having multi flaws at close spacing's under uniaxial loading using PFC3 D. The following findings are obtained: SCI,B/SUC,B has an average value of about 0.5 with a variability of ± 0.1. This range agrees quite well with the values obtained by former research. For joint inclination angle, β=90°,B,UCB,CI,A,A/SSSS is found to be around 0.48 irrespective of the value of joint continuity factor, k. No particular relation is found betweenB,UCB,CI,A,A/SSSS and β; however, the average B,UCB,CI,A,A/SSSS seems to slightly decrease with increasing k. The variability ofB,UCB,CI,A,A/SSSS is found to increase with k.Based on the cases studied in this work,B,UCB,CI,A,A/SSSS ranges between 0.3 and 0.5. This range is quite close to the range of 0.4to 0.6 obtained for SCI,B/SUC,B. The highest variability of ± 0.12 forB,UCB,CI,A,A/SSSS is obtained for k=0.8. For the remaining k values the variability ofB,UCB,CI,A,A/SSSS can be expressed within ± 0.05. This finding is very similar to the finding obtained for the variability of SCI,B/SUC,B.展开更多
In this paper, a four-layered road structure containing a top-down crack is investigated by performing finite element analyses in ABAQUS. In this study, in addition to the vertical load of a vehicle wheel, the horizon...In this paper, a four-layered road structure containing a top-down crack is investigated by performing finite element analyses in ABAQUS. In this study, in addition to the vertical load of a vehicle wheel, the horizontal load as well as its position with respect to the crack is also considered in the analyses, and the crack tip parameters including stress intensity factors(SIFs) and T-stress are then calculated. Moreover, influence of elastic modulus and thickness of the pavement layers on the crack tip parameters is studied. Results show that the horizontal and vertical loads along with their position with respect to the crack, elastic modulus and thickness of the road layers influence the crack tip parameters(KⅠ, KⅡ and T-stress) significantly. It was also found that for the cases that the vehicle wheel is positioned near the crack plane, only the shear deformation mode is observed at the crack tip;while, for the vehicle wheel positions far from the crack, only the opening mode is observed, and between these positions, both the opening and shear deformation modes(i.e., mixed mode Ⅰ/Ⅱ) are observed at the crack tip.展开更多
The formalism of the earlier fatigue crack growth models is retained to account for multiscaling of the fatigue process that involves the creation of macrocracks from the accumulation of micro damage.The effects of at...The formalism of the earlier fatigue crack growth models is retained to account for multiscaling of the fatigue process that involves the creation of macrocracks from the accumulation of micro damage.The effects of at least two scales,say micro to macro,must be accounted for.The same data can thus be reinterpreted by the invariancy of the transitional stress intensity factors such that the microcracking and macrocracking data would lie on a straight line.The threshold associated with the sigmoid curve disappears.Scale segmentation is shown to be a necessity for addressing multiscale energy dissipative processes such as fatigue and creep.Path independency and energy release rate are monoscale criteria that can lead to unphysical results,violating the first principles.Application of monoscale failure or fracture criteria to nanomaterials is taking toll at the expense of manufacturing super strength and light materials and structural components.This brief view is offered in the spirit of much needed additional research for the reinforcement of materials by creating nanoscale interfaces with sustainable time in service.The step by step consideraton at the different scales may offer a better understanding of the test data and their limitations with reference to space and time.展开更多
Magnetic properties and magnetocaloric effects (MCEs) of the HoPdA1 compounds with the hexagonal ZrNiAl-type and the orthorhombic TiNiSi-type structures are investigated. Both the compounds are found to be antiferro...Magnetic properties and magnetocaloric effects (MCEs) of the HoPdA1 compounds with the hexagonal ZrNiAl-type and the orthorhombic TiNiSi-type structures are investigated. Both the compounds are found to be antiferromagnet with the Nrel tem- perature TN=12 and 10 K, respectively. A field-induced metamagnetic transition from antiferromagnetic (AFM) state to ferro- magnetic (FM) state is observed below TN. For the hexagonal HoPdA1, a small magnetic field can induce an FM-like state due to a weak AFM coupling, which leads to a high saturation magnetization and gives rise to a large MCE around TN. The maxi- mal value of magnetic entropy change (ASM) is -20.6 J/kg K with a refrigerant capacity (RC) value of 386 J/kg for a field change of 0-5 T. For the orthorhombic HoPdA1, the critical field required for metamagnetic transition is estimated to be about 1.5 T, showing a strong AFM coupling. However, the maximal ASM value is still -13.7 J/kg K around TN for a field change of 0-5 T. The large reversible ASM and considerable RC suggest that HoPdA1 may be an appropriate candidate for magnetic re- frigerant in a low temperature range.展开更多
基金the Innovation Project for Graduates in Jiangsu Province~~
文摘Within the framework of nonlinear eleetroelasticity, the stress field near to the crack tip in an infinite piezoelectric media subject to a far field uniform loading is studied by using an electrical strip saturation model and the complex variable method. And the emphasis is placed on the stress field near to the crack tip. The obtained solutions show that the normalized stress components at an arbitrary point near to the crack tip are determined by the angle of the point. Moreover, the stress components are independent of the distance from the point to the ori- gin of the coordinate. The distributions of in-plane stress components near to the crack tip are analyzed based on numerical results for PZT-SH. Compared with some related solutions, results show that the solutions are valid.
基金Project(11102224)supported by the National Natural Science Foundation of ChinaProject(201206370124)supported by the China Scholarship Council,China
文摘The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A/SSSS) were studied by performing numerical stress analysis on blocks having multi flaws at close spacing's under uniaxial loading using PFC3 D. The following findings are obtained: SCI,B/SUC,B has an average value of about 0.5 with a variability of ± 0.1. This range agrees quite well with the values obtained by former research. For joint inclination angle, β=90°,B,UCB,CI,A,A/SSSS is found to be around 0.48 irrespective of the value of joint continuity factor, k. No particular relation is found betweenB,UCB,CI,A,A/SSSS and β; however, the average B,UCB,CI,A,A/SSSS seems to slightly decrease with increasing k. The variability ofB,UCB,CI,A,A/SSSS is found to increase with k.Based on the cases studied in this work,B,UCB,CI,A,A/SSSS ranges between 0.3 and 0.5. This range is quite close to the range of 0.4to 0.6 obtained for SCI,B/SUC,B. The highest variability of ± 0.12 forB,UCB,CI,A,A/SSSS is obtained for k=0.8. For the remaining k values the variability ofB,UCB,CI,A,A/SSSS can be expressed within ± 0.05. This finding is very similar to the finding obtained for the variability of SCI,B/SUC,B.
文摘In this paper, a four-layered road structure containing a top-down crack is investigated by performing finite element analyses in ABAQUS. In this study, in addition to the vertical load of a vehicle wheel, the horizontal load as well as its position with respect to the crack is also considered in the analyses, and the crack tip parameters including stress intensity factors(SIFs) and T-stress are then calculated. Moreover, influence of elastic modulus and thickness of the pavement layers on the crack tip parameters is studied. Results show that the horizontal and vertical loads along with their position with respect to the crack, elastic modulus and thickness of the road layers influence the crack tip parameters(KⅠ, KⅡ and T-stress) significantly. It was also found that for the cases that the vehicle wheel is positioned near the crack plane, only the shear deformation mode is observed at the crack tip;while, for the vehicle wheel positions far from the crack, only the opening mode is observed, and between these positions, both the opening and shear deformation modes(i.e., mixed mode Ⅰ/Ⅱ) are observed at the crack tip.
文摘The formalism of the earlier fatigue crack growth models is retained to account for multiscaling of the fatigue process that involves the creation of macrocracks from the accumulation of micro damage.The effects of at least two scales,say micro to macro,must be accounted for.The same data can thus be reinterpreted by the invariancy of the transitional stress intensity factors such that the microcracking and macrocracking data would lie on a straight line.The threshold associated with the sigmoid curve disappears.Scale segmentation is shown to be a necessity for addressing multiscale energy dissipative processes such as fatigue and creep.Path independency and energy release rate are monoscale criteria that can lead to unphysical results,violating the first principles.Application of monoscale failure or fracture criteria to nanomaterials is taking toll at the expense of manufacturing super strength and light materials and structural components.This brief view is offered in the spirit of much needed additional research for the reinforcement of materials by creating nanoscale interfaces with sustainable time in service.The step by step consideraton at the different scales may offer a better understanding of the test data and their limitations with reference to space and time.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50731007 and 51021061)the Knowledge Innovation Project of the Chinese Academy of Sciencesthe High-Technology Research and Development Program of China
文摘Magnetic properties and magnetocaloric effects (MCEs) of the HoPdA1 compounds with the hexagonal ZrNiAl-type and the orthorhombic TiNiSi-type structures are investigated. Both the compounds are found to be antiferromagnet with the Nrel tem- perature TN=12 and 10 K, respectively. A field-induced metamagnetic transition from antiferromagnetic (AFM) state to ferro- magnetic (FM) state is observed below TN. For the hexagonal HoPdA1, a small magnetic field can induce an FM-like state due to a weak AFM coupling, which leads to a high saturation magnetization and gives rise to a large MCE around TN. The maxi- mal value of magnetic entropy change (ASM) is -20.6 J/kg K with a refrigerant capacity (RC) value of 386 J/kg for a field change of 0-5 T. For the orthorhombic HoPdA1, the critical field required for metamagnetic transition is estimated to be about 1.5 T, showing a strong AFM coupling. However, the maximal ASM value is still -13.7 J/kg K around TN for a field change of 0-5 T. The large reversible ASM and considerable RC suggest that HoPdA1 may be an appropriate candidate for magnetic re- frigerant in a low temperature range.