The influence of the size of pre-cut hole of blank on the formability of cylindrical hole flanging in single point incremental forming(SPIF) was studied. The flange is produced in four stages starting from 45° ...The influence of the size of pre-cut hole of blank on the formability of cylindrical hole flanging in single point incremental forming(SPIF) was studied. The flange is produced in four stages starting from 45° to 90° and employing aluminum as the test material. It is shown that the hole size has significant effects on the stress/strain distribution on the cylindrical flange. The magnitude of hoop strains increases and the flange thickness increases as the hole size increases. Likewise, the von Mises stress reduces with the increasing of hole size. Further, there is a threshold value of hole size(i.e., 80 mm) below which severe stresses occur, which lead to sheet fracturing thus failing the successful forming of cylindrical flange. Moreover, the formability reduces as the hole size is increased above the threshold size. Finally, it is concluded that 80 mm is the threshold size of hole for maximizing the formability of aluminum sheet in incremental hole flanging.展开更多
The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s^-1 at ...The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s^-1 at 860-1 100 ℃. The true stress-tree strain curves of alloy hot-compressed in the α+β region exhibit a peak stress followed by continuous flow softening; whereas in the β region, the flow stress attains a steady-state regime. At a strain rate of 10 s^-1 and in a wide temperature range, the alloy exhibits plastic flow instability. According to the kinetic rate equation, the apparent activation energies are estimated to be about 633 kJ/mol in the α+β region and 281 kJ/mol in the β region, respectively. The processing maps show a domain of the globularization process of a colony structure and α dynamic recrystallization in the temperature range of 860-960 ℃ with a peak efficiency of about 60%, and a domain of β dynamic recrystallization in the β region with a peak efficiency of 80%.展开更多
A series of laboratory experiments and PFC numerical simulations for rock-like material specimens containing two unparallel fissures were carried out.On the basis of experimental and numerical results,the stress-strai...A series of laboratory experiments and PFC numerical simulations for rock-like material specimens containing two unparallel fissures were carried out.On the basis of experimental and numerical results,the stress-strain curves,mechanical properties,AE events,cracking behavior and energy characteristics were analyzed to reveal the macro-mechanical behavior and meso-mechanism of pre-fissured specimens under different loading rates.Investigated results show that:1)When the loading rate is relatively low,the stress-strain curves show a brittle response.When the loading rate is relatively high,the curve shows a more ductile response.Both of the peak strength and elastic mudulus increase with the increase of loading rate,which can be expressed as power functions.2)Four crack types are identified,i.e.,tensile crack,shear crack,far-field crack and surface spalling.Moreover,the tensile crack,far-field crack and surface spalling are under tensile mechanism,while the shear crack is under shear mechanism.3)The drops of the stress-strain curves all correspond to the crack initiation or coalescence,which is also linked to a sudden increasing in the accumulated micro-crack curve.4)Both of the maximum bond force and energy have the similar trend with the increase of loading rate to peak strength,which indicates that the trend of peak strength can be explained by the meso-mechanics and energy.展开更多
We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC3D was used to investigate the maximum ten...We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC3D was used to investigate the maximum tensile stress and displacement of a roadway in a known stress field for angles,α,between the roadway axial direction and the maximum principal stress of 0°,30°,45°,60° and 90°.This theory was applied to the analysis of an engineering case.The results indicate that stress and displacement of the surrounding rock increase as the angle,α,increases.This provides some significant guidance for a reasonable layout of roadways in a known stress field.展开更多
A parameter, known as the parameter of humidification vibration deformation, was proposed, describing quantitatively the impact of water content on vibration settlement deformation, and its relationship with humidific...A parameter, known as the parameter of humidification vibration deformation, was proposed, describing quantitatively the impact of water content on vibration settlement deformation, and its relationship with humidification water content, dynamic shear stress peak value, initial consolidation stress and vibration frequency was built. The result shows that 1) the parameter of humidification vibration deformation increases with the vibration shear stress peak value increasing. 2) The humidification water content has significant influence on the curve of the parameter of humidification vibration deformation and the peak vibration shear stress. When the humidification water content is low, the curve increases slowly. However, when the humidification water content is high, the curve increases rapidly. 3) Initial consolidation stress has significant influence on the humidification vibration deformation coefficient. When initial consolidation stress is not large enough to destroy the loess structure, with initial consolidation stress increasing, the humidification vibration deformation coefficient decreases. On the contrary, the humidification vibration deformation coefficient increases with initial consolidation stress increasing. 4) With the increase of vibration time, the parameter of humidification vibration settlement shows an increasing trend overall. The initial dynamic shear stress peak value and humidification water content all have significant effects on the curve of the parameter of humidification vibration settlement and vibration time. However, the humidification water content is even more significant.展开更多
Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uni...Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.展开更多
The calculation model for the relaxation loss of concrete mentioned in the Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts(JTG D62—2004) was modified according to experime...The calculation model for the relaxation loss of concrete mentioned in the Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts(JTG D62—2004) was modified according to experimental data. Time-varying relaxation loss was considered in the new model. Moreover, prestressed reinforcement with varying lengths(caused by the shrinkage and creep of concrete) might influence the final values and the time-varying function of the forecast relaxation loss. Hence, the effects of concrete shrinkage and creep were considered when calculating prestress loss, which reflected the coupling relation between these effects and relaxation loss in concrete. Hence, the forecast relaxation loss of prestressed reinforcement under the effects of different initial stress levels at any time point can be calculated using the modified model. To simplify the calculation, the integral expression of the model can be changed into an algebraic equation. The accuracy of the result is related to the division of the periods within the ending time of deriving the final value of the relaxation loss of prestressed reinforcement. When the time division is reasonable, result accuracy is high. The modified model works excellently according to the comparison of the test results. The calculation result of the modified model mainly reflects the prestress loss values of prestressed reinforcement at each time point, which confirms that adopting the finding in practical applications is reasonable.展开更多
文摘The influence of the size of pre-cut hole of blank on the formability of cylindrical hole flanging in single point incremental forming(SPIF) was studied. The flange is produced in four stages starting from 45° to 90° and employing aluminum as the test material. It is shown that the hole size has significant effects on the stress/strain distribution on the cylindrical flange. The magnitude of hoop strains increases and the flange thickness increases as the hole size increases. Likewise, the von Mises stress reduces with the increasing of hole size. Further, there is a threshold value of hole size(i.e., 80 mm) below which severe stresses occur, which lead to sheet fracturing thus failing the successful forming of cylindrical flange. Moreover, the formability reduces as the hole size is increased above the threshold size. Finally, it is concluded that 80 mm is the threshold size of hole for maximizing the formability of aluminum sheet in incremental hole flanging.
基金Project(50901063) supported by the National Natural Science Foundation of ChinaProject(2007DS0414, 2007BS05006) supported by the Science and Technology Program of Shangdong Province, ChinaProject supported by the Open Research Fund from State Key Laboratory of Rolling and Automation, Northeastern University, China
文摘The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s^-1 at 860-1 100 ℃. The true stress-tree strain curves of alloy hot-compressed in the α+β region exhibit a peak stress followed by continuous flow softening; whereas in the β region, the flow stress attains a steady-state regime. At a strain rate of 10 s^-1 and in a wide temperature range, the alloy exhibits plastic flow instability. According to the kinetic rate equation, the apparent activation energies are estimated to be about 633 kJ/mol in the α+β region and 281 kJ/mol in the β region, respectively. The processing maps show a domain of the globularization process of a colony structure and α dynamic recrystallization in the temperature range of 860-960 ℃ with a peak efficiency of about 60%, and a domain of β dynamic recrystallization in the β region with a peak efficiency of 80%.
基金Project(BK20150005) supported by the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars,ChinaProject(2014YC10) supported by the Fundamental Research Funds for the Central Universities,China
文摘A series of laboratory experiments and PFC numerical simulations for rock-like material specimens containing two unparallel fissures were carried out.On the basis of experimental and numerical results,the stress-strain curves,mechanical properties,AE events,cracking behavior and energy characteristics were analyzed to reveal the macro-mechanical behavior and meso-mechanism of pre-fissured specimens under different loading rates.Investigated results show that:1)When the loading rate is relatively low,the stress-strain curves show a brittle response.When the loading rate is relatively high,the curve shows a more ductile response.Both of the peak strength and elastic mudulus increase with the increase of loading rate,which can be expressed as power functions.2)Four crack types are identified,i.e.,tensile crack,shear crack,far-field crack and surface spalling.Moreover,the tensile crack,far-field crack and surface spalling are under tensile mechanism,while the shear crack is under shear mechanism.3)The drops of the stress-strain curves all correspond to the crack initiation or coalescence,which is also linked to a sudden increasing in the accumulated micro-crack curve.4)Both of the maximum bond force and energy have the similar trend with the increase of loading rate to peak strength,which indicates that the trend of peak strength can be explained by the meso-mechanics and energy.
基金supported by the National Basic Research Program of China (No.2010CB226805)the National Natural Science Foundation of China (Nos.50874103 and 50974115)+1 种基金the Natural Science Foundation of Jiangsu Province (No.KB2008135)the State Key Laboratory Fund (No.SKLGDUEK 0905)
文摘We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC3D was used to investigate the maximum tensile stress and displacement of a roadway in a known stress field for angles,α,between the roadway axial direction and the maximum principal stress of 0°,30°,45°,60° and 90°.This theory was applied to the analysis of an engineering case.The results indicate that stress and displacement of the surrounding rock increase as the angle,α,increases.This provides some significant guidance for a reasonable layout of roadways in a known stress field.
基金Foundation item: Project(51178392) supported by the National Natural Science Foundation of China
文摘A parameter, known as the parameter of humidification vibration deformation, was proposed, describing quantitatively the impact of water content on vibration settlement deformation, and its relationship with humidification water content, dynamic shear stress peak value, initial consolidation stress and vibration frequency was built. The result shows that 1) the parameter of humidification vibration deformation increases with the vibration shear stress peak value increasing. 2) The humidification water content has significant influence on the curve of the parameter of humidification vibration deformation and the peak vibration shear stress. When the humidification water content is low, the curve increases slowly. However, when the humidification water content is high, the curve increases rapidly. 3) Initial consolidation stress has significant influence on the humidification vibration deformation coefficient. When initial consolidation stress is not large enough to destroy the loess structure, with initial consolidation stress increasing, the humidification vibration deformation coefficient decreases. On the contrary, the humidification vibration deformation coefficient increases with initial consolidation stress increasing. 4) With the increase of vibration time, the parameter of humidification vibration settlement shows an increasing trend overall. The initial dynamic shear stress peak value and humidification water content all have significant effects on the curve of the parameter of humidification vibration settlement and vibration time. However, the humidification water content is even more significant.
基金Project(51479048) supported by National Natural Science Foundation of China
文摘Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.
基金Project(51551801)supported by the National Natural Science Foundation of ChinaProject(14JJ4062)supported by the Natural Science Foundation of Hunan Province,China
文摘The calculation model for the relaxation loss of concrete mentioned in the Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts(JTG D62—2004) was modified according to experimental data. Time-varying relaxation loss was considered in the new model. Moreover, prestressed reinforcement with varying lengths(caused by the shrinkage and creep of concrete) might influence the final values and the time-varying function of the forecast relaxation loss. Hence, the effects of concrete shrinkage and creep were considered when calculating prestress loss, which reflected the coupling relation between these effects and relaxation loss in concrete. Hence, the forecast relaxation loss of prestressed reinforcement under the effects of different initial stress levels at any time point can be calculated using the modified model. To simplify the calculation, the integral expression of the model can be changed into an algebraic equation. The accuracy of the result is related to the division of the periods within the ending time of deriving the final value of the relaxation loss of prestressed reinforcement. When the time division is reasonable, result accuracy is high. The modified model works excellently according to the comparison of the test results. The calculation result of the modified model mainly reflects the prestress loss values of prestressed reinforcement at each time point, which confirms that adopting the finding in practical applications is reasonable.