Objective: To observe the effect of simulated weightlessness on stress-strain relationship and the structural change of rabbit femoral vein. Methods: After seting up the Head-Down Tilt (-20°) (HDT) model to simul...Objective: To observe the effect of simulated weightlessness on stress-strain relationship and the structural change of rabbit femoral vein. Methods: After seting up the Head-Down Tilt (-20°) (HDT) model to simulate weightlessness, 24 healthy male New-Zealand Rabbits were randomly divided into HDT-21d group, HDT-10d group and control group, with 8 in each. Femoral venous strips and rings were used to make uniaxial tensile test of the longitudinal and circumferential specimens of the vessels. At last we observed the microstructure of femoral vein wall in 3 groups. Results : With the increasing of load stress, both longitudinal and circumferential strains of vein samples from 3 groups increased significantly (P<0. 01). With the decrease of unload stress, strains decrease obviously (P<0. 01). The unloaded longitudinal and the circumferential strain from 3 groups increased much than those of the loaded. Under the same stress (longitudinal 0-2. 0 g, circumferential 0. 5-1. 0 g) , HDT-21d group and HDT-10d group increased obviously in tlie longitudinal or circumferential strain (load and unload) than control, and HDT-21d increased much than that of HDT-10d. The contents and structures of femoral vein walls of HDT-rabbits changed significantly. Some endotheli-um cells of femoral vein became short, columnar or cubic even fell off. Smooth muscle layers became thinner. Conclusion:The compliance of femoral venous increased significantly after weightlessness-simulation and increased much obviously after 21d-HDT than that of 10 d. The structure of femoral vein wall changed obviously. The changes may be one reason for the increase of femoral vein compliance.展开更多
Constitutive experiments are the base of all rock mechanics works. The effect of engineering character on constitutive law is a new problem of rock mechanics. The results of series specimens based on the uniaxial and ...Constitutive experiments are the base of all rock mechanics works. The effect of engineering character on constitutive law is a new problem of rock mechanics. The results of series specimens based on the uniaxial and plane strain compression experiments were presented and discussed. It is found that engineering or experiment character has obvious effects on stress-strain relationship and especially on mechanic parameters in post-peak area. And the law of size effect of softening materials was also discussed.展开更多
Hardfill is a new type of artificially cemented material for dam construction works,with a wide application prospect.Its mechanical behavior lies between concrete and rockfill materials.A series of large-scale triaxia...Hardfill is a new type of artificially cemented material for dam construction works,with a wide application prospect.Its mechanical behavior lies between concrete and rockfill materials.A series of large-scale triaxial tests are performed on hardfill specimens at different ages,and the stress-strain behavior of hardfill is further discussed.The strength and stress-strain relationship of hardfill materials show both frictional mechanism and cohesive mechanism.An age-related constitutive model of hardfill is developed,which is a parallel model consisting of two components,rockfill component and cementation component.Moreover,a comparison is made between the simulated and the experimental results,which shows that the parallel model can reflect the mechanical characteristics of both rockfill-like nonlinearity and concrete-like age relativity.In addition,a simplified method for the determination of parameters is proposed.展开更多
基金Supported by Grant from the National Natural Science Foundation of China(30000197)
文摘Objective: To observe the effect of simulated weightlessness on stress-strain relationship and the structural change of rabbit femoral vein. Methods: After seting up the Head-Down Tilt (-20°) (HDT) model to simulate weightlessness, 24 healthy male New-Zealand Rabbits were randomly divided into HDT-21d group, HDT-10d group and control group, with 8 in each. Femoral venous strips and rings were used to make uniaxial tensile test of the longitudinal and circumferential specimens of the vessels. At last we observed the microstructure of femoral vein wall in 3 groups. Results : With the increasing of load stress, both longitudinal and circumferential strains of vein samples from 3 groups increased significantly (P<0. 01). With the decrease of unload stress, strains decrease obviously (P<0. 01). The unloaded longitudinal and the circumferential strain from 3 groups increased much than those of the loaded. Under the same stress (longitudinal 0-2. 0 g, circumferential 0. 5-1. 0 g) , HDT-21d group and HDT-10d group increased obviously in tlie longitudinal or circumferential strain (load and unload) than control, and HDT-21d increased much than that of HDT-10d. The contents and structures of femoral vein walls of HDT-rabbits changed significantly. Some endotheli-um cells of femoral vein became short, columnar or cubic even fell off. Smooth muscle layers became thinner. Conclusion:The compliance of femoral venous increased significantly after weightlessness-simulation and increased much obviously after 21d-HDT than that of 10 d. The structure of femoral vein wall changed obviously. The changes may be one reason for the increase of femoral vein compliance.
基金National Naturnal Science Foundation of China(5010902)
文摘Constitutive experiments are the base of all rock mechanics works. The effect of engineering character on constitutive law is a new problem of rock mechanics. The results of series specimens based on the uniaxial and plane strain compression experiments were presented and discussed. It is found that engineering or experiment character has obvious effects on stress-strain relationship and especially on mechanic parameters in post-peak area. And the law of size effect of softening materials was also discussed.
基金supported partially by the National Natural Science Foundation of China (Grant No. 10932012)the China-Europe Science and Technology Cooperation Program (Grant No. 0820)European Commission (Grant No. FP7-NMP-2007-LARGE-1)
文摘Hardfill is a new type of artificially cemented material for dam construction works,with a wide application prospect.Its mechanical behavior lies between concrete and rockfill materials.A series of large-scale triaxial tests are performed on hardfill specimens at different ages,and the stress-strain behavior of hardfill is further discussed.The strength and stress-strain relationship of hardfill materials show both frictional mechanism and cohesive mechanism.An age-related constitutive model of hardfill is developed,which is a parallel model consisting of two components,rockfill component and cementation component.Moreover,a comparison is made between the simulated and the experimental results,which shows that the parallel model can reflect the mechanical characteristics of both rockfill-like nonlinearity and concrete-like age relativity.In addition,a simplified method for the determination of parameters is proposed.