Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock mas...Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock masses with pre-stressed bolts,in this study,uniaxial compression tests were conducted on specimens with different anchoring types and flaw inclination angles.ABAQUS software was used to verify and supplement the laboratory tests.The laws of the uniaxial compressive strength(UCS)obtained from the numerical simulations and laboratory tests were consistent.The results showed that under the same flaw angle,both the UCS and elastic modulus of the bolted specimens were improved compared with those of the specimens without bolts and the improvements increased with an increase in the bolt pre-stress.Under the same anchoring type,the UCS and elastic modulus of the jointed specimens increased with an increase in the flaw angle.The pre-stressed bolt could not only restrain the slip of the specimens along the flaw surface but also change the propagation mode of the secondary cracks and limit the initiation of cracks.In addition,the plot contours of the maximum principal strain and the Tresca stress of the numerical models were influenced by the anchoring type,flaw angle,anchoring angle and bolt position.展开更多
Numerical simulation combined with experimental test was carried out to analyze the pre-stretching process of the 7075 aluminum alloy sheet,from which the stress variation curves and residual stress of aluminum alloy ...Numerical simulation combined with experimental test was carried out to analyze the pre-stretching process of the 7075 aluminum alloy sheet,from which the stress variation curves and residual stress of aluminum alloy sheet in different stretch rates were obtained.The results show that the residual stress in length direction is released after unloading the stretch force,while the residual stress in width direction is released during the stretching process.The study of residual stress elimination is beneficial for optimizing stretch rate on the basis of residual stress distribution law.By comparing the variation principle of residual stress in length direction,the size range of three deformation areas and elimination percentage of residual stress were obtained.The residual stresses of clamping area and transition area are not eliminated effectively,so sawing quantity should be the sum of both the areas.The elimination rate of residual stress in even deformation area could reach 90% after choosing a proper stretch rate,which is verified by both simulation and experiment.展开更多
In order to compensate for limitations of microscopic study on loess triaxial tests, taking the loess in Longxi area as an example, the authors established the loess triaxial test model by using PFC3D software and sim...In order to compensate for limitations of microscopic study on loess triaxial tests, taking the loess in Longxi area as an example, the authors established the loess triaxial test model by using PFC3D software and simulating tfiaxial shear test under the different confining pressures in 0 kPa, 50 kPa and 300 kPa. Compared with laboratory triaxial shear test, the numerical simulation test has a guiding role in loess mechanical strength analysis.展开更多
In this paper, by means of the maximum circle tensile stress on curve of constant ω and stress intensity factors by a path independent contour integral method, trajectories of maxed mode crack propagation are simulat...In this paper, by means of the maximum circle tensile stress on curve of constant ω and stress intensity factors by a path independent contour integral method, trajectories of maxed mode crack propagation are simulated through numerical manifold method. The crack propagation is traced dynamically by modifying the neighboring connection between the crack-top and nodes within elements in the calculating process. This method has the advantages such as less modified area, easiness of programming, high realizability and so on. Then a single sharp nicked specimen is used to verified the numerical result. It is shown that the provided method is reasonable and effective.展开更多
In this study, sensitivity experiments were conducted with the Zebiak-Cane ocean-atmosphere coupled model forced by the wind stress anomaly from the U.S. National Centers for Environmental Prediction/National Center f...In this study, sensitivity experiments were conducted with the Zebiak-Cane ocean-atmosphere coupled model forced by the wind stress anomaly from the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data to study the impacts of eastern Pacific warm pool on the formation and development of ENSO events. The effects of climatological mean sea surface temperature of the warm pool on forecast skill during the ENSO events of 1982-1999 are more considerable that those of climatological mean meridional winds and ocean currents. The forecast skill for the 1997/1998 E1 Nifio event is characterized by sensitivity to climatological mean sea surface temperature and anomalies of northerly winds and currents. The forecast skill is found insensitive to climatological mean northerly meridional winds and currents.展开更多
基金Project(51979281)supported by the National Natural Science Foundation of ChinaProject(ZR2018MEE050)supported by the Natural Science Foundation of Shandong Province,ChinaProject(18CX02079A)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock masses with pre-stressed bolts,in this study,uniaxial compression tests were conducted on specimens with different anchoring types and flaw inclination angles.ABAQUS software was used to verify and supplement the laboratory tests.The laws of the uniaxial compressive strength(UCS)obtained from the numerical simulations and laboratory tests were consistent.The results showed that under the same flaw angle,both the UCS and elastic modulus of the bolted specimens were improved compared with those of the specimens without bolts and the improvements increased with an increase in the bolt pre-stress.Under the same anchoring type,the UCS and elastic modulus of the jointed specimens increased with an increase in the flaw angle.The pre-stressed bolt could not only restrain the slip of the specimens along the flaw surface but also change the propagation mode of the secondary cracks and limit the initiation of cracks.In addition,the plot contours of the maximum principal strain and the Tresca stress of the numerical models were influenced by the anchoring type,flaw angle,anchoring angle and bolt position.
基金Project(2009GJF10028) supported by Technical Special Pilot Program of ChinaProject(CDJXS11110013) supported by the Fundamental Research Funds for the Central Universities of China
文摘Numerical simulation combined with experimental test was carried out to analyze the pre-stretching process of the 7075 aluminum alloy sheet,from which the stress variation curves and residual stress of aluminum alloy sheet in different stretch rates were obtained.The results show that the residual stress in length direction is released after unloading the stretch force,while the residual stress in width direction is released during the stretching process.The study of residual stress elimination is beneficial for optimizing stretch rate on the basis of residual stress distribution law.By comparing the variation principle of residual stress in length direction,the size range of three deformation areas and elimination percentage of residual stress were obtained.The residual stresses of clamping area and transition area are not eliminated effectively,so sawing quantity should be the sum of both the areas.The elimination rate of residual stress in even deformation area could reach 90% after choosing a proper stretch rate,which is verified by both simulation and experiment.
文摘In order to compensate for limitations of microscopic study on loess triaxial tests, taking the loess in Longxi area as an example, the authors established the loess triaxial test model by using PFC3D software and simulating tfiaxial shear test under the different confining pressures in 0 kPa, 50 kPa and 300 kPa. Compared with laboratory triaxial shear test, the numerical simulation test has a guiding role in loess mechanical strength analysis.
基金Funded by the National Natural Science Foundation of China (No. 10272033) and Guangdong Provincial Natural Science Foundation(Nos.04105386,5300090 and 05001844).
文摘In this paper, by means of the maximum circle tensile stress on curve of constant ω and stress intensity factors by a path independent contour integral method, trajectories of maxed mode crack propagation are simulated through numerical manifold method. The crack propagation is traced dynamically by modifying the neighboring connection between the crack-top and nodes within elements in the calculating process. This method has the advantages such as less modified area, easiness of programming, high realizability and so on. Then a single sharp nicked specimen is used to verified the numerical result. It is shown that the provided method is reasonable and effective.
基金National Natural Science Foundation of China (40875025, 40875030, 40775033, 40921160381)Shanghai Natural Science Foundation of China (08ZR1422900)Key Promotion Project of New Meteorology Technology of the China Meteorological Administration in 2009 (09A13)
文摘In this study, sensitivity experiments were conducted with the Zebiak-Cane ocean-atmosphere coupled model forced by the wind stress anomaly from the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data to study the impacts of eastern Pacific warm pool on the formation and development of ENSO events. The effects of climatological mean sea surface temperature of the warm pool on forecast skill during the ENSO events of 1982-1999 are more considerable that those of climatological mean meridional winds and ocean currents. The forecast skill for the 1997/1998 E1 Nifio event is characterized by sensitivity to climatological mean sea surface temperature and anomalies of northerly winds and currents. The forecast skill is found insensitive to climatological mean northerly meridional winds and currents.