The finite element method (FEM) is introduced to calculate the oil film pressure and temperature distribution of a journal bearing. The perturbation is performed directly on the finite element equation. Consequently...The finite element method (FEM) is introduced to calculate the oil film pressure and temperature distribution of a journal bearing. The perturbation is performed directly on the finite element equation. Consequently, the Jacobian matrices of the oil film forces are concisely obtained. The equilibrium position of the bearing with a given static load is found by the Newton-Raphson method. As byproducts, dynamic coefficients are obtained simultaneously without any extra computing time. From the numerical results, it is concluded that the effects of film temperature on stiffness coefficients are bigger than those on damping coefficients. With the increase of rotational speed, the load capacity and the stiffness coefficients of the journal bearing are increased when the eccentricity is small, while decreased when the eccentricity is big.展开更多
To take into account the couple stress effects, a modified Reynolds equation is derived for dynamically loaded journal beatings with the consideration of the elasticity of the liner. The numerical results show that th...To take into account the couple stress effects, a modified Reynolds equation is derived for dynamically loaded journal beatings with the consideration of the elasticity of the liner. The numerical results show that the influence of couple stresses on the bearing characteristics is significant. Compared with Newtonian lubricants, lubricants with couple stresses increase the fluid film pressure, as a result enhance the load-carrying capacity and reduce the friction coefficient. However, since the elasticity of the liner weakens the couple stress effect, elastic liners yield a reduction in the load-carrying capacity and an increase in the friction coefficient. The elastic deformation of the bearing liner should be considered in an accurate performance evaluation of the journal bearing.展开更多
基金Supported by the National″111″Project(B07050)the China Postdoctoral Science Foundation(20100471634)~~
文摘The finite element method (FEM) is introduced to calculate the oil film pressure and temperature distribution of a journal bearing. The perturbation is performed directly on the finite element equation. Consequently, the Jacobian matrices of the oil film forces are concisely obtained. The equilibrium position of the bearing with a given static load is found by the Newton-Raphson method. As byproducts, dynamic coefficients are obtained simultaneously without any extra computing time. From the numerical results, it is concluded that the effects of film temperature on stiffness coefficients are bigger than those on damping coefficients. With the increase of rotational speed, the load capacity and the stiffness coefficients of the journal bearing are increased when the eccentricity is small, while decreased when the eccentricity is big.
基金Project (No. 571123) supported by the Scientific Research SpecialFoundation for the Excellent Youth Teacher of Shanghai University byEducation Committee of Shanghai, China
文摘To take into account the couple stress effects, a modified Reynolds equation is derived for dynamically loaded journal beatings with the consideration of the elasticity of the liner. The numerical results show that the influence of couple stresses on the bearing characteristics is significant. Compared with Newtonian lubricants, lubricants with couple stresses increase the fluid film pressure, as a result enhance the load-carrying capacity and reduce the friction coefficient. However, since the elasticity of the liner weakens the couple stress effect, elastic liners yield a reduction in the load-carrying capacity and an increase in the friction coefficient. The elastic deformation of the bearing liner should be considered in an accurate performance evaluation of the journal bearing.