The laser bending of single-crystal silicon sheet (0.2 mm in thickness) was investigated with JK701 Nd:YAG laser. The models were developed to describe the beam characteristics of pulsed laser. In order to simulate...The laser bending of single-crystal silicon sheet (0.2 mm in thickness) was investigated with JK701 Nd:YAG laser. The models were developed to describe the beam characteristics of pulsed laser. In order to simulate the process of laser bending, the FEM software ANSYS was used to predict the heat temperature and stress-strain fields. The periodic transformation of temperature field and stress-strain distribution was analyzed during pulsed laser scanning silicon sheet. The results indicate that the mechanism of pulsed laser bending silicon is a hybrid mechanism in silicon bending, rather than a simple mechanism of TGM or BM. This work also gets silicon sheet bent after scanning 6 times with pulsed laser, and its bending angle is up to 6.5°. The simulation and prediction results reach well agreement with the verifying experiments.展开更多
The carrier mobility of Si material can be enhanced under strain,and the stress magnitude can be measured by the Raman spectrum.In this paper,we aim to study the penetration depths into biaxially-strained Si materials...The carrier mobility of Si material can be enhanced under strain,and the stress magnitude can be measured by the Raman spectrum.In this paper,we aim to study the penetration depths into biaxially-strained Si materials at various Raman excitation wavelengths and the stress model corresponding to Raman spectrum in biaxially-strained Si.The experimental results show that it is best to use 325 nm excitation to measure the material stress in the top strained Si layer,and that one must pay attention to the distortion of the buffer layers on measuring results while 514 nm excitation is also measurable.Moreover,we established the stress model for Raman spectrum of biaxially-strained Si based on the Secular equation.One can obtain the stress magnitude in biaxially-strained Si by the model,as long as the results of the Raman spectrum are given.Our quantitative results can provide valuable references for stress analysis on strained materials.展开更多
Ultrasonic vibration can be used for the micro-molding of metallic glasses(MGs)due to stress-softening and fast surface-diffusion effects.However,the structural rearrangement under ultrasonic vibration and its impact ...Ultrasonic vibration can be used for the micro-molding of metallic glasses(MGs)due to stress-softening and fast surface-diffusion effects.However,the structural rearrangement under ultrasonic vibration and its impact on the mechanical response of metallic glasses remain a puzzle.In this work,the plastic flow of the Zr35Ti30Cu8.25Be26.75 metallic glass with the applied ultrasonic-vibration energy of 140 J was investigated by nanoindentation.Both Kelvin and Maxwell-Voigt models have been adopted to analyze the structural evolution during the creep deformation.The increase of the characteristic relaxation time and the peak intensity of relaxation spectra can be found in the sample after ultrasonic vibration.It effectively improves the activation energy of atomic diffusion during the glass transition(Eg)and the growth of the crystal nucleus(Ep).A more homogenous plastic deformation with a weak loading-rate sensitivity of stress exponent is observed in the ultrasonic-vibrated sample,which coincides with the low pile-up and penetration depth as shown in the cross profile of indents.The structural rearrangement under resonance actuation demonstrated in this work might help us better understand the defect-activation mechanism for the plastic flow of amorphous systems.展开更多
基金Projects (50975041, 50775019) supported by the National Natural Science Foundation of ChinaProjects (20062181, 2008S054) supported by Liaoning Province’s Government Science Fund, China
文摘The laser bending of single-crystal silicon sheet (0.2 mm in thickness) was investigated with JK701 Nd:YAG laser. The models were developed to describe the beam characteristics of pulsed laser. In order to simulate the process of laser bending, the FEM software ANSYS was used to predict the heat temperature and stress-strain fields. The periodic transformation of temperature field and stress-strain distribution was analyzed during pulsed laser scanning silicon sheet. The results indicate that the mechanism of pulsed laser bending silicon is a hybrid mechanism in silicon bending, rather than a simple mechanism of TGM or BM. This work also gets silicon sheet bent after scanning 6 times with pulsed laser, and its bending angle is up to 6.5°. The simulation and prediction results reach well agreement with the verifying experiments.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(Grant No.JY0300122503)the NLAIC Research Fund(Grant No.P140c090303110c0904)
文摘The carrier mobility of Si material can be enhanced under strain,and the stress magnitude can be measured by the Raman spectrum.In this paper,we aim to study the penetration depths into biaxially-strained Si materials at various Raman excitation wavelengths and the stress model corresponding to Raman spectrum in biaxially-strained Si.The experimental results show that it is best to use 325 nm excitation to measure the material stress in the top strained Si layer,and that one must pay attention to the distortion of the buffer layers on measuring results while 514 nm excitation is also measurable.Moreover,we established the stress model for Raman spectrum of biaxially-strained Si based on the Secular equation.One can obtain the stress magnitude in biaxially-strained Si by the model,as long as the results of the Raman spectrum are given.Our quantitative results can provide valuable references for stress analysis on strained materials.
基金the National Natural Science Foundation of China(51631003,51871157 and 51601038)the Key Basic and Applied Research Program of Guangdong Province,China(2019B030302010)+3 种基金the Natural Science Foundation of Jiangsu Province,China(BK20171354)the Fundamental Research Funds for the Central Universities(2242020K40002)the Research and Practice Innovation Program for Postgraduates in Jiangsu Province(SJCX20_0038)Jiangsu Key Laboratory for Advanced Metallic Materials(BM2007204)。
文摘Ultrasonic vibration can be used for the micro-molding of metallic glasses(MGs)due to stress-softening and fast surface-diffusion effects.However,the structural rearrangement under ultrasonic vibration and its impact on the mechanical response of metallic glasses remain a puzzle.In this work,the plastic flow of the Zr35Ti30Cu8.25Be26.75 metallic glass with the applied ultrasonic-vibration energy of 140 J was investigated by nanoindentation.Both Kelvin and Maxwell-Voigt models have been adopted to analyze the structural evolution during the creep deformation.The increase of the characteristic relaxation time and the peak intensity of relaxation spectra can be found in the sample after ultrasonic vibration.It effectively improves the activation energy of atomic diffusion during the glass transition(Eg)and the growth of the crystal nucleus(Ep).A more homogenous plastic deformation with a weak loading-rate sensitivity of stress exponent is observed in the ultrasonic-vibrated sample,which coincides with the low pile-up and penetration depth as shown in the cross profile of indents.The structural rearrangement under resonance actuation demonstrated in this work might help us better understand the defect-activation mechanism for the plastic flow of amorphous systems.