Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luosha...Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.展开更多
Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation....Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.展开更多
We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC3D was used to investigate the maximum ten...We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC3D was used to investigate the maximum tensile stress and displacement of a roadway in a known stress field for angles,α,between the roadway axial direction and the maximum principal stress of 0°,30°,45°,60° and 90°.This theory was applied to the analysis of an engineering case.The results indicate that stress and displacement of the surrounding rock increase as the angle,α,increases.This provides some significant guidance for a reasonable layout of roadways in a known stress field.展开更多
Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and ...Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and numerical calculation, the control techniques of surrounding rocks in GER-FLTC working face are studied in this paper. The two main difficulties of stability of surrounding rocks at gob-side retained entry in fully-mechanized longwall working face are the stability control of top coal and control of large deformation of GER-FLTC working face. Interaction mechanical model between roofing and roadside backfilling in GER-FLTC is established and the equations for the calculation of roof-cutting resistance of roadside backfilling are derived. Results of numerical calculation show that the damage zones of top coal can be categorized into the delaminating zone of top coal above the backfilling, tensile damage zone of top coal above the retained roadway and shear damage zone of the upper rib of the solid coal. Stability control of top coal is the critical part to success of GER-FLTC. With consideration of large deformation of surrounding rocks of gob-side retained entry in fully-mechanized longwall, the support technique of‘‘roofing control and wall strengthening'' is proposed where high strength and highly prestressed anchor rods and diagonal tensile anchor cables support are used for top coal, high strength and highly prestressed yielding anchor rod support is used for solid coal and roadside prestressed load-carrying backfilling is constructed by high-water material, in order to maintain the integrity of the top coal, transfer load, high resistance yielding load-carrying of solid coal, roof-cutting of roadside backfilling and support,and to achieve GER-FLTC. Results from this study are successfully applied in engineering practice.展开更多
On basis of ground stress surveying and analysis of physical nature and mechanics character of rock, the deformation mechanism of west main roadway in Zhangshuanglou Mine is studied. It is put forward that engineering...On basis of ground stress surveying and analysis of physical nature and mechanics character of rock, the deformation mechanism of west main roadway in Zhangshuanglou Mine is studied. It is put forward that engineering mechanics nature, infiltration of water and concentrated stress on pillar are the main factors to affect stability of the west main roadway. The overall thinking used to restore the roadway is raised.展开更多
To solve the problem of supporting three downhill coal structures in the Yongan Coal Mine of Shanxi Jincheng, we studied the regular development of stress and plastic zones and characteristics of deformation of rock s...To solve the problem of supporting three downhill coal structures in the Yongan Coal Mine of Shanxi Jincheng, we studied the regular development of stress and plastic zones and characteristics of deformation of rock surrounding roadway groups after a period of roadway driving, mining one side as well as mining both sides, we used FLAC 3D for our numerical and theoretical analyses. Field test were carried out, where we revealed the deformation mechanism of roadways and its coal pillars in complex stress conditions. We proposed a roadway stability control technology using backwall grouting with high-water rapid hardening material and combined support with bolt and cable anchoring after mining both sides. Our field practices showed that deformation of rock surrounding roadways can be controlled with this technology.展开更多
Stability is always the most important problem after high slope was excavated.The study analyzed the stress and strain inside the slope by Finite Element Method(FEM) and carried through stress distribution and failure...Stability is always the most important problem after high slope was excavated.The study analyzed the stress and strain inside the slope by Finite Element Method(FEM) and carried through stress distribution and failure zone,then analyzed the stability of the slope using three different methods and came to the conclusion that it is in unstable condition,so the designed retaining wall was put forward which makes the slope stable.展开更多
The research concentrates mainly on the development of failure process in composite rock-mass through acoustic emission, convergence inspection, stress measurement, subside area measurement, level measurement in the p...The research concentrates mainly on the development of failure process in composite rock-mass through acoustic emission, convergence inspection, stress measurement, subside area measurement, level measurement in the process of stability and safety monitoring as well as inspecting of subside area in composite hard rock. In terms of the modern signal analysis technology, various aspects are discussed. The monitoring result and the stability of rock mass can be synthetically evaluated and inferred, and the location of acoustic origin according to the acoustic emission regularity can be successfully detected. Finally the key factors of the deformation can be inferred from in subside area.展开更多
Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage ...Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability.展开更多
Rock fall related accidents continue to occur in coal mines,although artificial support mechanisms have been used extensively. Roof stability is primarily determined in many underground mines by a limited number of me...Rock fall related accidents continue to occur in coal mines,although artificial support mechanisms have been used extensively. Roof stability is primarily determined in many underground mines by a limited number of methods that often resort to subjective criteria. It is argued in this paper that stability conditions of mine roof strata,as a key factor in sustainability in coal mines,must be determined by a survey which proactively investigates fundamental aspects of said mine. Failure of rock around the opening happens as a result of both high rock stress conditions and the presence of structural discontinuities. The properties of such discontinuities affect the engineering behavior of rock masses causing wedges or blocks to fall from the roof or sliding out of the walls. A practical rule-based approach to assess the risk of a roof fall is proposed in the paper. The method is based on the analysis of structural data and the geometry and stability of wedges in underground coal mines. In this regard,an accident causing a huge collapse in a coal mine leading to 4 fatalities is illustrated by way of a case study. Horizontal and vertical profiles are prepared by geophysical methods to define the falling zone and its boundaries. The collapse is then modeled by the use of sophisticated computer programs in order to identify the causes of the accident.展开更多
Three kinds of polymeric materials are taken as example for the verification of linear ex-trapolation method from unified master lines with reduced universal equations on creep and stress relaxation tests. The theoret...Three kinds of polymeric materials are taken as example for the verification of linear ex-trapolation method from unified master lines with reduced universal equations on creep and stress relaxation tests. The theoretical values of long-term mechanical behavior and lifetime for a cured epoxide, polypropylene, poly(methyl-methacrylate), and SBR rubber are directly evaluated with the universal equations on reduced creep compliance and reduced stress relax-ation modulus and are compared with their predicted values by the linear extrapolation from the unified master lines of creep and stress relaxation. The results show that the theoretical values of dimensional stability, bearing ability and lifetime are in an excellent agreement with the predicted values, it shows that the linear extrapolation method is more simple and reliable. The dependences of long-term mechanical behaviors and lifetime on the different aging times are discussed.展开更多
Ground stress is the fundamental cause of deformation and failure during underground structural engineering. Field stress measurements in the main coal bed in the Lueliang mining area were made by the bore hole, stres...Ground stress is the fundamental cause of deformation and failure during underground structural engineering. Field stress measurements in the main coal bed in the Lueliang mining area were made by the bore hole, stress relief method. From these data the ground stress distribution of the mining area was obtained. The relationship between the horizontal principal stress and the deformation and failure of a roadway is discussed with an engineering example. The results indicate that horizontal stress dominates in the shallow crust in the Ltiliang mining area. Roadways at different angles to the maximum principal stress have different levels of stress concentration. This leads to a significant difference in stability of the corresponding roadways. These research results provide an important criterion for determining roadway position and direction, stope layout, and roadway support design.展开更多
文摘Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.
基金the National Natural Science Foundation of China(No.50774077)the State Key Laboratory of Coal Resources and Safe Mining Autonomous Study Subject Foundation of China(No.SKLCRSM08X04)+2 种基金the National Basic Research Program of China,the National Excellence Doctor Degree Dissertation Special Foundation of China(No.200760)the New Century Talent Support Program of the Ministry of Education of China(No.NCET-06-0475)the Youth Scientific Research Foundation of China University of Mining & Technology(No. 2008A002)
文摘Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.
基金supported by the National Basic Research Program of China (No.2010CB226805)the National Natural Science Foundation of China (Nos.50874103 and 50974115)+1 种基金the Natural Science Foundation of Jiangsu Province (No.KB2008135)the State Key Laboratory Fund (No.SKLGDUEK 0905)
文摘We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC3D was used to investigate the maximum tensile stress and displacement of a roadway in a known stress field for angles,α,between the roadway axial direction and the maximum principal stress of 0°,30°,45°,60° and 90°.This theory was applied to the analysis of an engineering case.The results indicate that stress and displacement of the surrounding rock increase as the angle,α,increases.This provides some significant guidance for a reasonable layout of roadways in a known stress field.
基金supported by Chinese National Programs for Fundamental Research and Development(973 Program)(2013CB227905)Natural Science Foundation of Jiangsu Province of China(BK20140210)
文摘Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and numerical calculation, the control techniques of surrounding rocks in GER-FLTC working face are studied in this paper. The two main difficulties of stability of surrounding rocks at gob-side retained entry in fully-mechanized longwall working face are the stability control of top coal and control of large deformation of GER-FLTC working face. Interaction mechanical model between roofing and roadside backfilling in GER-FLTC is established and the equations for the calculation of roof-cutting resistance of roadside backfilling are derived. Results of numerical calculation show that the damage zones of top coal can be categorized into the delaminating zone of top coal above the backfilling, tensile damage zone of top coal above the retained roadway and shear damage zone of the upper rib of the solid coal. Stability control of top coal is the critical part to success of GER-FLTC. With consideration of large deformation of surrounding rocks of gob-side retained entry in fully-mechanized longwall, the support technique of‘‘roofing control and wall strengthening'' is proposed where high strength and highly prestressed anchor rods and diagonal tensile anchor cables support are used for top coal, high strength and highly prestressed yielding anchor rod support is used for solid coal and roadside prestressed load-carrying backfilling is constructed by high-water material, in order to maintain the integrity of the top coal, transfer load, high resistance yielding load-carrying of solid coal, roof-cutting of roadside backfilling and support,and to achieve GER-FLTC. Results from this study are successfully applied in engineering practice.
文摘On basis of ground stress surveying and analysis of physical nature and mechanics character of rock, the deformation mechanism of west main roadway in Zhangshuanglou Mine is studied. It is put forward that engineering mechanics nature, infiltration of water and concentrated stress on pillar are the main factors to affect stability of the west main roadway. The overall thinking used to restore the roadway is raised.
基金Financial support for this work,provided by the National Natural Science Foundation of China (No.50774077)the Research Foundation of the State Key Laboratory of Coal Resources and Mine Safety (No.SKLCRSM08X04)+3 种基金the National Basic Research Program of China (No.2007CB209401)the Foundation for the Author of National Excellent Doctoral Dissertation of China (No.200760)the Program for New Century Excellent Talents in University (No.NCET-06-0475)the Science Foundation for Youth of China University of Mining and Technology (No.2008A002)
文摘To solve the problem of supporting three downhill coal structures in the Yongan Coal Mine of Shanxi Jincheng, we studied the regular development of stress and plastic zones and characteristics of deformation of rock surrounding roadway groups after a period of roadway driving, mining one side as well as mining both sides, we used FLAC 3D for our numerical and theoretical analyses. Field test were carried out, where we revealed the deformation mechanism of roadways and its coal pillars in complex stress conditions. We proposed a roadway stability control technology using backwall grouting with high-water rapid hardening material and combined support with bolt and cable anchoring after mining both sides. Our field practices showed that deformation of rock surrounding roadways can be controlled with this technology.
文摘Stability is always the most important problem after high slope was excavated.The study analyzed the stress and strain inside the slope by Finite Element Method(FEM) and carried through stress distribution and failure zone,then analyzed the stability of the slope using three different methods and came to the conclusion that it is in unstable condition,so the designed retaining wall was put forward which makes the slope stable.
文摘The research concentrates mainly on the development of failure process in composite rock-mass through acoustic emission, convergence inspection, stress measurement, subside area measurement, level measurement in the process of stability and safety monitoring as well as inspecting of subside area in composite hard rock. In terms of the modern signal analysis technology, various aspects are discussed. The monitoring result and the stability of rock mass can be synthetically evaluated and inferred, and the location of acoustic origin according to the acoustic emission regularity can be successfully detected. Finally the key factors of the deformation can be inferred from in subside area.
基金Projects(51374112/E0409,51109084/E090701) supported by the National Natural Science Foundation of ChinaProject(ZQN-PY112) supported by the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,China+1 种基金Project(SKLGP2013K014) supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology),ChinaProject(SKLGDUEK1304) supported by the Open Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,China
文摘Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability.
文摘Rock fall related accidents continue to occur in coal mines,although artificial support mechanisms have been used extensively. Roof stability is primarily determined in many underground mines by a limited number of methods that often resort to subjective criteria. It is argued in this paper that stability conditions of mine roof strata,as a key factor in sustainability in coal mines,must be determined by a survey which proactively investigates fundamental aspects of said mine. Failure of rock around the opening happens as a result of both high rock stress conditions and the presence of structural discontinuities. The properties of such discontinuities affect the engineering behavior of rock masses causing wedges or blocks to fall from the roof or sliding out of the walls. A practical rule-based approach to assess the risk of a roof fall is proposed in the paper. The method is based on the analysis of structural data and the geometry and stability of wedges in underground coal mines. In this regard,an accident causing a huge collapse in a coal mine leading to 4 fatalities is illustrated by way of a case study. Horizontal and vertical profiles are prepared by geophysical methods to define the falling zone and its boundaries. The collapse is then modeled by the use of sophisticated computer programs in order to identify the causes of the accident.
基金This work was supported by the National Natural Science Foundation of China (No.50973007).
文摘Three kinds of polymeric materials are taken as example for the verification of linear ex-trapolation method from unified master lines with reduced universal equations on creep and stress relaxation tests. The theoretical values of long-term mechanical behavior and lifetime for a cured epoxide, polypropylene, poly(methyl-methacrylate), and SBR rubber are directly evaluated with the universal equations on reduced creep compliance and reduced stress relax-ation modulus and are compared with their predicted values by the linear extrapolation from the unified master lines of creep and stress relaxation. The results show that the theoretical values of dimensional stability, bearing ability and lifetime are in an excellent agreement with the predicted values, it shows that the linear extrapolation method is more simple and reliable. The dependences of long-term mechanical behaviors and lifetime on the different aging times are discussed.
基金supported by the National Natural Science Foundation of China (No. 50874103)the National Basic Research Program of China (No. 2010CB226805)+1 种基金the Natural Science Foundation of Jiangsu Province (No. BK2008135)the Open Foundation of State Key Laboratory of Geomechanics and Deep Underground Engineering (No. SKLGDUEK0905)
文摘Ground stress is the fundamental cause of deformation and failure during underground structural engineering. Field stress measurements in the main coal bed in the Lueliang mining area were made by the bore hole, stress relief method. From these data the ground stress distribution of the mining area was obtained. The relationship between the horizontal principal stress and the deformation and failure of a roadway is discussed with an engineering example. The results indicate that horizontal stress dominates in the shallow crust in the Ltiliang mining area. Roadways at different angles to the maximum principal stress have different levels of stress concentration. This leads to a significant difference in stability of the corresponding roadways. These research results provide an important criterion for determining roadway position and direction, stope layout, and roadway support design.