Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads,...Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads, and stress of strata was calculated under pillars with linear load by calculation method for uniform load. This approach leads to a rapid analyzing method for strata stress under pillars with any form of loads. Through theoretical analysis, strata stress expressions for pillars under linear bearing conditions are obtained. In addition, two concepts, stress increase factor and stress factor, are proposed for the approximate analysis of strata stress by uniform load approximation method. It is also found that the stress increase factor of strata is related to the strata stress factor and the ratio of the minimum load on the pillar' two ends to the maximum one; and the distribution features of stress factors and the sizes of their influencing areas in strata influenced by overlying pillars are obtained. Combining with the gob pillar conditions of Jurassic coal seam in Tongxin Coal Mine, it is demonstrated that the results obtained by stress distribution analysis of the strata stress in non-influencing areas of pillars with linear bearing through uniform load approximation are in basic accordance with the results obtained for pillars under linear bearing condition. Therefore, it is feasible and accurate to calculate stress in non-influencing area in strata under pillars with linear bearing condition by uniform load calculation method.展开更多
Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes...Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes are widely used in offshore engineering practice. On the basis of mooring line statics, an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article, taking into account the horizontal restoring force, vertical restoring force and their coupling terms. The nonlinearity of mooring stiffness was analyzed, and the influences of various parameters, such as material, displacement, pre-tension and water depth, were investigated. Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented. Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system. Also, the stiffness can be used in hydrodynamic analysis to get the eieenfrequencv of slow drift motions.展开更多
To figure out the distribution of temperature gradient along the girder height of steel-concrete composite box girder, combined with the mechanical characteristics of prestressed concrete composed box girder with corr...To figure out the distribution of temperature gradient along the girder height of steel-concrete composite box girder, combined with the mechanical characteristics of prestressed concrete composed box girder with corrugated steel webs, the calculation formulas of cross-sectional temperature stress along the span in a simply-supported beam bridge with composite section were derived under the conditions of static equilibrium and deformation compatibility of the beam element. The methods of calculating the maximum temperature stress value were discussed when the connectors are assumed rigid or flexible. Theoretical and numerical results indicate that the method proposed shows better precision for the calculation of temperature self-stress in both the top and the bottom surfaces of the box girder. Moreover, the regularity of temperature stress distribution at different locations along the girder span is that the largest axial force of the top or the bottom plate of the box girder is located in the midspan and spreads decreasingly until zero at both supported ends, and that the greatest longitudinal shear density in steel-concrete interface appears at both supported ends and then reduces gradually to zero in the midspan.展开更多
A stress analysis of the Sarafix external fixator design was performed using finite element analysis (FEA) and experimental tensometric measurements. The study was conducted at one of the Sarafix fixator configurati...A stress analysis of the Sarafix external fixator design was performed using finite element analysis (FEA) and experimental tensometric measurements. The study was conducted at one of the Sarafix fixator configurations that have a clinical application in the treatment of tibia fractures. The intensity of principal and yon Mises stresses generated at two measuring points (MP) on the fixator connecting rod were monitored and analyzed during the testing on axial compression on the fixator design and its finite element model (FEM). The 3D geometrical and FEM model of the fixator was formed using the computer aided design/computer aided engineering (CAD/CAE) software system CATIA. Verification of the results for the dominant principal stresses obtained from FEA was carried out through tensometric measurements. The measuring chain consisted of strain gauges connected into two Wheatstone half-bridges, digital measuring amplifier system and a computer with software for acquisition and monitoring of measurement results. A quite good agreement was observed between the results obtained on the basis of FEA and results of experimental tensometric analysis,展开更多
A novel method is presented to build the triangular surface model and calculate the tangential stress and strain of myocardial wall ,which can be further used to reflect the left ventricle twisting—a sensitive index ...A novel method is presented to build the triangular surface model and calculate the tangential stress and strain of myocardial wall ,which can be further used to reflect the left ventricle twisting—a sensitive index to assess the systolic and diastolic function of heart. Firstly, a point distribution model is used to obtain the feature points of the ventricular surface in medical images. Secondly, the surface model is constructed by triangular mesh, and then the subdivision strategy is introduced to refine the model. Thirdly, plane projection and finite element method(FEM) are applied to calculate the tangential stress and strain.Finally, the distribution of tangential modulus of elasticity is discussed. The stimulation results show that the proposed method can be used to compute the tangential stress and strain of myocardial wall effectively and the computing result is consistent with the results mentioned in the literatures.展开更多
基金Project(51174192) supported by the National Natural Science Foundation of ChinaProject(BRA2010024) supported by"333"Training Foundation of Jiangsu Province,ChinaProject(CXLX12_0964) supported by Innovation Project of Graduate Students Training of Jiangsu Province,China
文摘Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads, and stress of strata was calculated under pillars with linear load by calculation method for uniform load. This approach leads to a rapid analyzing method for strata stress under pillars with any form of loads. Through theoretical analysis, strata stress expressions for pillars under linear bearing conditions are obtained. In addition, two concepts, stress increase factor and stress factor, are proposed for the approximate analysis of strata stress by uniform load approximation method. It is also found that the stress increase factor of strata is related to the strata stress factor and the ratio of the minimum load on the pillar' two ends to the maximum one; and the distribution features of stress factors and the sizes of their influencing areas in strata influenced by overlying pillars are obtained. Combining with the gob pillar conditions of Jurassic coal seam in Tongxin Coal Mine, it is demonstrated that the results obtained by stress distribution analysis of the strata stress in non-influencing areas of pillars with linear bearing through uniform load approximation are in basic accordance with the results obtained for pillars under linear bearing condition. Therefore, it is feasible and accurate to calculate stress in non-influencing area in strata under pillars with linear bearing condition by uniform load calculation method.
基金Supported by the National Natural Science Foundation of China under Grant No.(51079034).
文摘Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes are widely used in offshore engineering practice. On the basis of mooring line statics, an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article, taking into account the horizontal restoring force, vertical restoring force and their coupling terms. The nonlinearity of mooring stiffness was analyzed, and the influences of various parameters, such as material, displacement, pre-tension and water depth, were investigated. Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented. Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system. Also, the stiffness can be used in hydrodynamic analysis to get the eieenfrequencv of slow drift motions.
基金Supported by National Natural Science Foundation of China (No. 50978105)
文摘To figure out the distribution of temperature gradient along the girder height of steel-concrete composite box girder, combined with the mechanical characteristics of prestressed concrete composed box girder with corrugated steel webs, the calculation formulas of cross-sectional temperature stress along the span in a simply-supported beam bridge with composite section were derived under the conditions of static equilibrium and deformation compatibility of the beam element. The methods of calculating the maximum temperature stress value were discussed when the connectors are assumed rigid or flexible. Theoretical and numerical results indicate that the method proposed shows better precision for the calculation of temperature self-stress in both the top and the bottom surfaces of the box girder. Moreover, the regularity of temperature stress distribution at different locations along the girder span is that the largest axial force of the top or the bottom plate of the box girder is located in the midspan and spreads decreasingly until zero at both supported ends, and that the greatest longitudinal shear density in steel-concrete interface appears at both supported ends and then reduces gradually to zero in the midspan.
文摘A stress analysis of the Sarafix external fixator design was performed using finite element analysis (FEA) and experimental tensometric measurements. The study was conducted at one of the Sarafix fixator configurations that have a clinical application in the treatment of tibia fractures. The intensity of principal and yon Mises stresses generated at two measuring points (MP) on the fixator connecting rod were monitored and analyzed during the testing on axial compression on the fixator design and its finite element model (FEM). The 3D geometrical and FEM model of the fixator was formed using the computer aided design/computer aided engineering (CAD/CAE) software system CATIA. Verification of the results for the dominant principal stresses obtained from FEA was carried out through tensometric measurements. The measuring chain consisted of strain gauges connected into two Wheatstone half-bridges, digital measuring amplifier system and a computer with software for acquisition and monitoring of measurement results. A quite good agreement was observed between the results obtained on the basis of FEA and results of experimental tensometric analysis,
基金supported by the National Natural Science Foundation of China and Microsoft Research Asia ( No. NSFC-60870002 No. 60802087)+2 种基金NCET and the Science and Technology Department of Zhejiang Province ( No. 2009C21008 No. 2010R10006 No. 2010C33095)
文摘A novel method is presented to build the triangular surface model and calculate the tangential stress and strain of myocardial wall ,which can be further used to reflect the left ventricle twisting—a sensitive index to assess the systolic and diastolic function of heart. Firstly, a point distribution model is used to obtain the feature points of the ventricular surface in medical images. Secondly, the surface model is constructed by triangular mesh, and then the subdivision strategy is introduced to refine the model. Thirdly, plane projection and finite element method(FEM) are applied to calculate the tangential stress and strain.Finally, the distribution of tangential modulus of elasticity is discussed. The stimulation results show that the proposed method can be used to compute the tangential stress and strain of myocardial wall effectively and the computing result is consistent with the results mentioned in the literatures.