Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1...Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed.展开更多
Experimental investigations of the dilatancy and particle breakage of gravelly material from the Zipingpu concrete-faced rock- fill dam, which was subjected to high-intensity seismic load during the 2008 Wenchuan eart...Experimental investigations of the dilatancy and particle breakage of gravelly material from the Zipingpu concrete-faced rock- fill dam, which was subjected to high-intensity seismic load during the 2008 Wenchuan earthquake, were conducted through a series of large-scale drained triaxial compression tests. A hyperbolic relation between the input plastic work and the degree of particle breakage was found for Zipingpu gravel, independent of the initial void ratio and confining pressures. The stress-dilatancy for Zipingpu gravel was analyzed and compared with data from two rounded alluvial and three angular quar- ried gravelly and rockfill materials in the literature. A nearly linear relationship between the dilatancy Dp and the stress ratio η was found at medium-to-large stress ratios before the peak stress ratio. The slope of the stress-dilatancy line before peak had slight dependence on the void ratio and confining pressure of the gravel. After peak, the stress-dilatancy relation shifts down compared with that before peak for the gravel specimen. The phase-transformation stress ratio decreased with increased con- fining pressure, with the exception of sub-rounded gravel with little particle breakage. A nearly linear relationship was found between the phase-transformation stress ratio Mf and the state parameter ψ for the Zipingpu gravel, regardless of the void ratio and confining pressure of the specimens.展开更多
文摘Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed.
基金supported by the State Key Program of the National Natural Science Foundation of China(Grant No.51138001)the National Natural Science Foundation of China(Grant Nos.51279025+1 种基金91215301&51508071)the Program for New Century Excellent Talents in University(Grant No.NCET-12-0083)
文摘Experimental investigations of the dilatancy and particle breakage of gravelly material from the Zipingpu concrete-faced rock- fill dam, which was subjected to high-intensity seismic load during the 2008 Wenchuan earthquake, were conducted through a series of large-scale drained triaxial compression tests. A hyperbolic relation between the input plastic work and the degree of particle breakage was found for Zipingpu gravel, independent of the initial void ratio and confining pressures. The stress-dilatancy for Zipingpu gravel was analyzed and compared with data from two rounded alluvial and three angular quar- ried gravelly and rockfill materials in the literature. A nearly linear relationship between the dilatancy Dp and the stress ratio η was found at medium-to-large stress ratios before the peak stress ratio. The slope of the stress-dilatancy line before peak had slight dependence on the void ratio and confining pressure of the gravel. After peak, the stress-dilatancy relation shifts down compared with that before peak for the gravel specimen. The phase-transformation stress ratio decreased with increased con- fining pressure, with the exception of sub-rounded gravel with little particle breakage. A nearly linear relationship was found between the phase-transformation stress ratio Mf and the state parameter ψ for the Zipingpu gravel, regardless of the void ratio and confining pressure of the specimens.