Within the framework of nonlinear eleetroelasticity, the stress field near to the crack tip in an infinite piezoelectric media subject to a far field uniform loading is studied by using an electrical strip saturation ...Within the framework of nonlinear eleetroelasticity, the stress field near to the crack tip in an infinite piezoelectric media subject to a far field uniform loading is studied by using an electrical strip saturation model and the complex variable method. And the emphasis is placed on the stress field near to the crack tip. The obtained solutions show that the normalized stress components at an arbitrary point near to the crack tip are determined by the angle of the point. Moreover, the stress components are independent of the distance from the point to the ori- gin of the coordinate. The distributions of in-plane stress components near to the crack tip are analyzed based on numerical results for PZT-SH. Compared with some related solutions, results show that the solutions are valid.展开更多
The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests und...The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests under unconsolidated-undrained conditions. Through a series of tests on saturated clay, the effects of initial shear stress and stress reversal on the clay’s strain-stress behavior are examined, and the behavior of pore water pressure is studied. The experimental results indicate that the patterns of stress-strain relations are distinctly influenced by the initial shear stress in the cyclic single-direction shear tests. When the initial shear stress is large and no stress reversal occurs, the predominant deformation behavior is characterized by an accumulative effect. When the initial shear stress is zero and symmetrical cyclic stress occurs, the predominant deformation behavior is characterized by a cyclic effect. The pore water pressure fluctuates around the confining pressure with the increase of cycle number. It seems that the fluctuating amplitude increases with the increase of the cyclic stress. But a buildup of pore water pressure does not occur. The de- formations of clay samples under the complex initial and the cyclic coupled stress conditions include the normal deviatoric deforma- tion and horizontal shear deformation, the average deformation and cyclic deformation. A general strain failure criterion taking into account these deformations is recommended and is proved more stable and suitable compared to the strain failure criteria currently used.展开更多
When water seeps upwards through a saturated soil layer,the soil layer may become instability and water films occur and develop.Water film serves as a natural sliding surface because of its very small friction.Accordi...When water seeps upwards through a saturated soil layer,the soil layer may become instability and water films occur and develop.Water film serves as a natural sliding surface because of its very small friction.Accordingly,debris flow may happen.To investigate this phenomenon,a pseudothree-phase media is presented first.Then discontinuity method is used to analyze the expansion velocity of water film.Finally,perturbation method is used to analyze the case that a water flow is forced to seep upwards through the soil layer while the movement of the skeleton may be neglected relative to that of water.The theoretical evolutions of pore pressure gradient,effective stress,water velocity,the porosity and the eroded fine grains are obtained.It can be seen clearly that with the erosion and redeposited of fine grains,permeability at some positions in the soil layer becomes smaller and smaller and,the pore pressure gradient becomes bigger and bigger,while the effective stress becomes smaller and smaller.When the effective stress equals zero,e.f.liquefaction,the water film occurs.It is shown also that once a water film occurs,it will be expanded in a speed of U(t)(1-ε).展开更多
A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The...A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The stress-strain behavior of in-situ soil at a depth of 5 m was investigated by conducting undrained triaxial compression tests using the remolded soil samples. The test results show that the stress-strain relationship of unsaturated cohesive soil is still hyperbolic. The values of parameters a and b given in the model decrease with increasing the confining pressure for soil samples with the same moisture content and increase with increasing the moisture content for soil samples under the same confining pressure. The relationships between parameters a, b and moisture content were studied for confining pressures of 100, 150, 200 and 250 kPa. The comparison between the measured and predicted stress-strain curves for an additional group of soil samples, having a moisture content of 25.4%, shows that the proposed moisture content-dependent hyperbolic model provides a good prediction of stress-strain behavior of unsaturated cohesive soil.展开更多
The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was establ...The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was established based on the unsaturated creep tests of weak intercalated soils by using GDS triaxial apparatus. The results show that the creep behaviors of intercalated soils are apparent and significantly affected by matric suction. Based on this, an empirical Mesri creep model for intercalated soils under varying matric suctions was built. The fitting results show that the parameters Ed and m of this model are in good power relations with matric suction s and stress level Dr, respectively. An improved Mesri creep model was established involving stress-matric suction-strain-time, which is more precise than the Mesri creep model in predicting the unsaturated creep behaviors of weak intercalated soils.展开更多
Porous materials can be found in a variety of geophysical and engineering applications.The existence of thermal contact resistance at the interface between bilayered saturated porous strata would result in a significa...Porous materials can be found in a variety of geophysical and engineering applications.The existence of thermal contact resistance at the interface between bilayered saturated porous strata would result in a significant temperature difference at the interface.An attempt is made to study the thermo-hydro-mechanical coupling dynamic response of bilayered saturated porous strata with thermal contact resistance and elastic wave impedance.The corresponding analytical solutions for the dynamic response of bilayered saturated porous strata under a harmonic thermal load are derived by the operator decomposition method,and their rationality is verified by comparing them with existing solutions.The influences of thermal contact resistance,thermal conductivity ratio,and porosity ratio on the dynamic response of bilayered saturated porous strata are systematically investigated.Outcomes disclose that with the increase of thermal contact resistance,the displacement,pore water pressure and stress decrease gradually,and the temperature jump at the interface between two saturated porous strata increases.展开更多
基金the Innovation Project for Graduates in Jiangsu Province~~
文摘Within the framework of nonlinear eleetroelasticity, the stress field near to the crack tip in an infinite piezoelectric media subject to a far field uniform loading is studied by using an electrical strip saturation model and the complex variable method. And the emphasis is placed on the stress field near to the crack tip. The obtained solutions show that the normalized stress components at an arbitrary point near to the crack tip are determined by the angle of the point. Moreover, the stress components are independent of the distance from the point to the ori- gin of the coordinate. The distributions of in-plane stress components near to the crack tip are analyzed based on numerical results for PZT-SH. Compared with some related solutions, results show that the solutions are valid.
基金This work is supported by the National Natural Science Foundation of China (Grant Nos. 50579006, 50639010 and 50179006).
文摘The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests under unconsolidated-undrained conditions. Through a series of tests on saturated clay, the effects of initial shear stress and stress reversal on the clay’s strain-stress behavior are examined, and the behavior of pore water pressure is studied. The experimental results indicate that the patterns of stress-strain relations are distinctly influenced by the initial shear stress in the cyclic single-direction shear tests. When the initial shear stress is large and no stress reversal occurs, the predominant deformation behavior is characterized by an accumulative effect. When the initial shear stress is zero and symmetrical cyclic stress occurs, the predominant deformation behavior is characterized by a cyclic effect. The pore water pressure fluctuates around the confining pressure with the increase of cycle number. It seems that the fluctuating amplitude increases with the increase of the cyclic stress. But a buildup of pore water pressure does not occur. The de- formations of clay samples under the complex initial and the cyclic coupled stress conditions include the normal deviatoric deforma- tion and horizontal shear deformation, the average deformation and cyclic deformation. A general strain failure criterion taking into account these deformations is recommended and is proved more stable and suitable compared to the strain failure criteria currently used.
基金supported by the National Basic Research Program of China (973 program) "Activity characteristics and formation rules of secondary mountain hazard of earthquake" (Grant No.2008CB425802)Key Program of Chinese Academy of Sciences (No.KZCX2-YW-302-02)
文摘When water seeps upwards through a saturated soil layer,the soil layer may become instability and water films occur and develop.Water film serves as a natural sliding surface because of its very small friction.Accordingly,debris flow may happen.To investigate this phenomenon,a pseudothree-phase media is presented first.Then discontinuity method is used to analyze the expansion velocity of water film.Finally,perturbation method is used to analyze the case that a water flow is forced to seep upwards through the soil layer while the movement of the skeleton may be neglected relative to that of water.The theoretical evolutions of pore pressure gradient,effective stress,water velocity,the porosity and the eroded fine grains are obtained.It can be seen clearly that with the erosion and redeposited of fine grains,permeability at some positions in the soil layer becomes smaller and smaller and,the pore pressure gradient becomes bigger and bigger,while the effective stress becomes smaller and smaller.When the effective stress equals zero,e.f.liquefaction,the water film occurs.It is shown also that once a water film occurs,it will be expanded in a speed of U(t)(1-ε).
基金Project(50608038) supported by the National Natural Science Foundation of China
文摘A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The stress-strain behavior of in-situ soil at a depth of 5 m was investigated by conducting undrained triaxial compression tests using the remolded soil samples. The test results show that the stress-strain relationship of unsaturated cohesive soil is still hyperbolic. The values of parameters a and b given in the model decrease with increasing the confining pressure for soil samples with the same moisture content and increase with increasing the moisture content for soil samples under the same confining pressure. The relationships between parameters a, b and moisture content were studied for confining pressures of 100, 150, 200 and 250 kPa. The comparison between the measured and predicted stress-strain curves for an additional group of soil samples, having a moisture content of 25.4%, shows that the proposed moisture content-dependent hyperbolic model provides a good prediction of stress-strain behavior of unsaturated cohesive soil.
基金Project supported by Science&Technology Program of Hubei Traffic and Transport Office,ChinaProject(41272377)supported by the National Natural Science Foundation of China
文摘The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was established based on the unsaturated creep tests of weak intercalated soils by using GDS triaxial apparatus. The results show that the creep behaviors of intercalated soils are apparent and significantly affected by matric suction. Based on this, an empirical Mesri creep model for intercalated soils under varying matric suctions was built. The fitting results show that the parameters Ed and m of this model are in good power relations with matric suction s and stress level Dr, respectively. An improved Mesri creep model was established involving stress-matric suction-strain-time, which is more precise than the Mesri creep model in predicting the unsaturated creep behaviors of weak intercalated soils.
基金Projects(52108347,52178371)supported by the National Natural Science Foundation of ChinaProject(LQ22E080010)supported by the Exploring Youth Project of Zhejiang Natural Science Foundation,China。
文摘Porous materials can be found in a variety of geophysical and engineering applications.The existence of thermal contact resistance at the interface between bilayered saturated porous strata would result in a significant temperature difference at the interface.An attempt is made to study the thermo-hydro-mechanical coupling dynamic response of bilayered saturated porous strata with thermal contact resistance and elastic wave impedance.The corresponding analytical solutions for the dynamic response of bilayered saturated porous strata under a harmonic thermal load are derived by the operator decomposition method,and their rationality is verified by comparing them with existing solutions.The influences of thermal contact resistance,thermal conductivity ratio,and porosity ratio on the dynamic response of bilayered saturated porous strata are systematically investigated.Outcomes disclose that with the increase of thermal contact resistance,the displacement,pore water pressure and stress decrease gradually,and the temperature jump at the interface between two saturated porous strata increases.