The low cycle fatigue behavior of zirconium−titanium−steel composite plate under symmetrical and asymmetric stress control was studied.The effects of mean stress and stress amplitude on cyclic deformation,ratcheting e...The low cycle fatigue behavior of zirconium−titanium−steel composite plate under symmetrical and asymmetric stress control was studied.The effects of mean stress and stress amplitude on cyclic deformation,ratcheting effect and damage mechanism were discussed in detail.The results show that under symmetric stress control,the forward ratcheting deformation is observed.Under asymmetric stress control,the ratcheting strain increases rapidly with mean stress and stress amplitude increasing.Under high stress amplitude,the influence of mean stress is more significant.In addition,by studying the variation of strain energy density,it is found that the stress amplitude mainly promotes the fatigue damage,while the mean stress leads to the ratcheting damage.In addition,fractographic observation shows that the crack initiates in the brittle metal compound at the interface,and the steel has higher resistance to crack propagation.Finally,the accuracy of life prediction model considering ratcheting effect is discussed in detail,and a high-precision life prediction model directly based on mean stress and stress amplitude is proposed.展开更多
Based on Tanaka and Mura’s fatigue model and Griffith theory for fracture,an energy-equilibrium model was proposed to explain the complex stress effect on fatigue behavior.When the summation of the elastic strain ene...Based on Tanaka and Mura’s fatigue model and Griffith theory for fracture,an energy-equilibrium model was proposed to explain the complex stress effect on fatigue behavior.When the summation of the elastic strain energy release and the stored strain energy of accumulated dislocations reach the surface energy of a crack,the fatigue crack will initiate in materials.According to this model,for multiaxial stress condition,the orientation of the crack initiation and the initiation life can be deduced from the energy equilibrium equation.For the uniaxial fatigue loading with mean stress,the relation between the maximum stress or the minimum stress and the stress amplitude is in agreement with an ellipse equation on the constant life diagram.If the ratio of the mean stress to stress amplitude is less than a critical value-0.17,and the stress amplitude keeps constant,the fatigue crack initiation life will decrease with the increase of the compress mean stress.In this model,the mean stress does not cause damage accumulation with the fatigue cycles in crack initiation.For this reason,the loading sequence of different load levels would induce the cumulative damage to deviate from the Palmgren-Miner cumulative damage rule.The procedure of estimating the damage under random loading is also discussed.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.51975271,51675260,51475223)the Starting Research Fund of Nanjing Vocational University of Industry Technology,China(No.YK20-14-05)。
文摘The low cycle fatigue behavior of zirconium−titanium−steel composite plate under symmetrical and asymmetric stress control was studied.The effects of mean stress and stress amplitude on cyclic deformation,ratcheting effect and damage mechanism were discussed in detail.The results show that under symmetric stress control,the forward ratcheting deformation is observed.Under asymmetric stress control,the ratcheting strain increases rapidly with mean stress and stress amplitude increasing.Under high stress amplitude,the influence of mean stress is more significant.In addition,by studying the variation of strain energy density,it is found that the stress amplitude mainly promotes the fatigue damage,while the mean stress leads to the ratcheting damage.In addition,fractographic observation shows that the crack initiates in the brittle metal compound at the interface,and the steel has higher resistance to crack propagation.Finally,the accuracy of life prediction model considering ratcheting effect is discussed in detail,and a high-precision life prediction model directly based on mean stress and stress amplitude is proposed.
基金supported by the National Basic Research Program of China (Grant No. 2012CB937500)the National Natural Science Foundation of China (Grant Nos. 11072243 and 11202210)
文摘Based on Tanaka and Mura’s fatigue model and Griffith theory for fracture,an energy-equilibrium model was proposed to explain the complex stress effect on fatigue behavior.When the summation of the elastic strain energy release and the stored strain energy of accumulated dislocations reach the surface energy of a crack,the fatigue crack will initiate in materials.According to this model,for multiaxial stress condition,the orientation of the crack initiation and the initiation life can be deduced from the energy equilibrium equation.For the uniaxial fatigue loading with mean stress,the relation between the maximum stress or the minimum stress and the stress amplitude is in agreement with an ellipse equation on the constant life diagram.If the ratio of the mean stress to stress amplitude is less than a critical value-0.17,and the stress amplitude keeps constant,the fatigue crack initiation life will decrease with the increase of the compress mean stress.In this model,the mean stress does not cause damage accumulation with the fatigue cycles in crack initiation.For this reason,the loading sequence of different load levels would induce the cumulative damage to deviate from the Palmgren-Miner cumulative damage rule.The procedure of estimating the damage under random loading is also discussed.