Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding pro...Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.展开更多
Metals heat-treated under high pressure can exhibit different properties. The heat-induced pressure on 2024 aluminum alloy during restricting expansion-deformation heat-treatment was calculated by using the ABAQUS fin...Metals heat-treated under high pressure can exhibit different properties. The heat-induced pressure on 2024 aluminum alloy during restricting expansion-deformation heat-treatment was calculated by using the ABAQUS finite element software, and the effects of the mould material properties, such as coefficient of thermal expansion (CTE), elastic modulus and yield strength, on the pressure were discussed. The simulated results show that the relatively uniform heat-induced pressure, approximately 503 MPa at 500 ℃, appears on 2024 alloy when 42CrMo steel is as the mould material. The heat-induced pressure increases with decreasing the CTE and the increases of elastic modulus and yield strength of the mould material. The influences of the CTE and elastic modulus on the heat-induced pressure are more notable.展开更多
The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC c...The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC composites during braking were fully coupled and simulated with ANSYS software. The results of tribological tests indicated that the C/C-SiC composites showed excellent static friction coefficient (0.68) and dynamic friction coefficient (average value of 0.36). The highest temperature on friction surface was 445℃. The simulated temperature field showed that the highest temperature which appeared on the friction surface during braking was about 463℃. Analysis regarding thermal-stress field showed that the highest thermal-stress on friction surface was 11.5 MPa. The temperature and thermal-stress distributions on friction surface during braking showed the same tendency.展开更多
The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material ...The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material nonlinearity,geometrical nonlinearity and work hardening on the welding process is studied,and the differences in the welding temperature field,residual stress and welding distortion by A-LWB and by single laser welding-brazing(SLWB)are analyzed.The results show that the thermal cycle,residual stress distribution and welding distortion by the numerical simulation are in good agreement with the measured data by experiments,which verifies the effectiveness of FEM.Compared with the SLWB,A-LWB can make the high-temperature distribution zone of weld in width direction wider,decrease the transverse tensile stress in the weld and reduce the distribution range of longitudinal tensile stress.And the welding deformation also decreases to some extent.展开更多
A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedepe...A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedependent thermal properties,latent heat of phase transformations and molten pool convection,the effects of laser power,point distance and hatch spacing on the temperature distribution,molten pool dimensions and residual stress distribution were investigated.Then,the effects of laser power,point distance and hatch spacing on the microstructure,density and hardness of the alloy were studied by the experimental method.The results show that the molten pool size gradually increases as the laser power increases and the point distance and hatch spacing decrease.The residual stress mainly concentrates in the middle of the first scanning track and the beginning and end of each scanning track.Experimental results demonstrate the accuracy of the model.The density of the samples tends to increase and then decrease with increasing laser power and decreasing point distance and hatch spacing.The optimum process parameters are laser power of 325−375 W,point distance of 80−100μm and hatch spacing of 80μm.展开更多
Identification of the meta-instable stress state and study of its mechanism and evolution of relevant physical fields would be of great significance for determination of potential seismic risks and estimation of criti...Identification of the meta-instable stress state and study of its mechanism and evolution of relevant physical fields would be of great significance for determination of potential seismic risks and estimation of critical times. In laboratory experiments, that the specimen enters the meta-instable is marked by accelerated stress release. Could we use the experimental result to identify the earthquake in natural conditions? Because the observational data from one station can only reflect the stress state beneath this station, the key problem for identification of the meta-instability is how to recognize regional stress state through observational data from many stations. In this work, we choose the evolution of the temperature field over varied deformation stages during a stick-slip event on a 5 bending fault as an example, and attempt to find the response features of the physical quantity when the fault enters the meta-instable state. We discuss the characteristics of stages for the stress build-up, stress-time process deviating from linearity before instability, meta-instability, instability, and post-instability, respectively. The result shows that the fault instability slide is a conversion process from independent activities of each fault segment to synergism activity. The instability implies completion of the synergism. The stage deviating from linearity is the onset of stress release, and it is also the onset of the synergism. At the meta-instability stages, stress release becomes dominant, while the synergism tends to finish. Therefore, the analysis of the regional overall stress state should not start from individual stations, and instead it should begin with the evolution of the whole deformation field.展开更多
基金Foundation item:Project (2010CB731704) supported by the National Basic Research Program of ChinaProject (51075189) supported by the National Natural Science Foundation of China
文摘Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.
基金Project (51071125) supported by the National Natural Science Foundation of ChinaProjects (SKLSP201107, SKLSP 201124) supported by the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University, China
文摘Metals heat-treated under high pressure can exhibit different properties. The heat-induced pressure on 2024 aluminum alloy during restricting expansion-deformation heat-treatment was calculated by using the ABAQUS finite element software, and the effects of the mould material properties, such as coefficient of thermal expansion (CTE), elastic modulus and yield strength, on the pressure were discussed. The simulated results show that the relatively uniform heat-induced pressure, approximately 503 MPa at 500 ℃, appears on 2024 alloy when 42CrMo steel is as the mould material. The heat-induced pressure increases with decreasing the CTE and the increases of elastic modulus and yield strength of the mould material. The influences of the CTE and elastic modulus on the heat-induced pressure are more notable.
基金Project(51575536)supported by the National Natural Science Foundation of ChinaProject(2016YFB0301403)supported by the National Key Research and Development Program of ChinaProject(2017zzts435)supported by Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC composites during braking were fully coupled and simulated with ANSYS software. The results of tribological tests indicated that the C/C-SiC composites showed excellent static friction coefficient (0.68) and dynamic friction coefficient (average value of 0.36). The highest temperature on friction surface was 445℃. The simulated temperature field showed that the highest temperature which appeared on the friction surface during braking was about 463℃. Analysis regarding thermal-stress field showed that the highest thermal-stress on friction surface was 11.5 MPa. The temperature and thermal-stress distributions on friction surface during braking showed the same tendency.
基金Project(51465031)supported by the National Natural Science Foundation of ChinaProject(17JR5RA126)supported by the Natural Science Foundation of Gansu Province,China
文摘The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material nonlinearity,geometrical nonlinearity and work hardening on the welding process is studied,and the differences in the welding temperature field,residual stress and welding distortion by A-LWB and by single laser welding-brazing(SLWB)are analyzed.The results show that the thermal cycle,residual stress distribution and welding distortion by the numerical simulation are in good agreement with the measured data by experiments,which verifies the effectiveness of FEM.Compared with the SLWB,A-LWB can make the high-temperature distribution zone of weld in width direction wider,decrease the transverse tensile stress in the weld and reduce the distribution range of longitudinal tensile stress.And the welding deformation also decreases to some extent.
基金financial supports from the National Natural Science Foundation of China (No.51804349)the China Postdoctoral Science Foundation (No.2018M632986)+1 种基金the Natural Science Foundation of Hunan Province,China (No.2019JJ50766)the National Key Laboratory of Science and Technology on High-strength Structural Materials,China (No.JCKY201851)。
文摘A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedependent thermal properties,latent heat of phase transformations and molten pool convection,the effects of laser power,point distance and hatch spacing on the temperature distribution,molten pool dimensions and residual stress distribution were investigated.Then,the effects of laser power,point distance and hatch spacing on the microstructure,density and hardness of the alloy were studied by the experimental method.The results show that the molten pool size gradually increases as the laser power increases and the point distance and hatch spacing decrease.The residual stress mainly concentrates in the middle of the first scanning track and the beginning and end of each scanning track.Experimental results demonstrate the accuracy of the model.The density of the samples tends to increase and then decrease with increasing laser power and decreasing point distance and hatch spacing.The optimum process parameters are laser power of 325−375 W,point distance of 80−100μm and hatch spacing of 80μm.
基金supported by the National Natural Science Foundation of China(Grant Nos. 40872129, 41172180)
文摘Identification of the meta-instable stress state and study of its mechanism and evolution of relevant physical fields would be of great significance for determination of potential seismic risks and estimation of critical times. In laboratory experiments, that the specimen enters the meta-instable is marked by accelerated stress release. Could we use the experimental result to identify the earthquake in natural conditions? Because the observational data from one station can only reflect the stress state beneath this station, the key problem for identification of the meta-instability is how to recognize regional stress state through observational data from many stations. In this work, we choose the evolution of the temperature field over varied deformation stages during a stick-slip event on a 5 bending fault as an example, and attempt to find the response features of the physical quantity when the fault enters the meta-instable state. We discuss the characteristics of stages for the stress build-up, stress-time process deviating from linearity before instability, meta-instability, instability, and post-instability, respectively. The result shows that the fault instability slide is a conversion process from independent activities of each fault segment to synergism activity. The instability implies completion of the synergism. The stage deviating from linearity is the onset of stress release, and it is also the onset of the synergism. At the meta-instability stages, stress release becomes dominant, while the synergism tends to finish. Therefore, the analysis of the regional overall stress state should not start from individual stations, and instead it should begin with the evolution of the whole deformation field.