期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Effect of strain rate and deformation temperature on strain hardening and softening behavior of pure copper 被引量:4
1
作者 黄树海 舒大禹 +1 位作者 胡传凯 朱世凤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期1044-1054,共11页
The effects of the deformation temperature and the strain rate on the hot deformation behavior of pure copper were investigated based on compression tests. The expressions of strain hardening rate, dynamic recrystalli... The effects of the deformation temperature and the strain rate on the hot deformation behavior of pure copper were investigated based on compression tests. The expressions of strain hardening rate, dynamic recrystallization critical stress, saturated stress, dynamic recovery volume fraction and dynamic recrystallization volume fraction were determined. According to the processing map, the instability regions occur in regions of 400?450 °C, 0.001?0.05 s?1 and 450?750 °C, 0.05?1 s?1. The deformation mechanism in the stability region is dynamic recrystallization. The flow stress was predicted. The results also show that the true stress–true strain curves predicted by the extracted model are in good agreement with the experimental results. 展开更多
关键词 COPPER hot compression deformation strain hardening strain softening
下载PDF
Analysis of plane strain bending of a strain hardening curved beam based on unified yield criterion 被引量:1
2
作者 傅军 庞苗 +2 位作者 宋广远 张永强 杨博 《Journal of Southeast University(English Edition)》 EI CAS 2016年第3期339-345,共7页
The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. Th... The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. The solutions for the mechanical properties of plane strain bending are derived, which are adapted for various kinds of non-strength differential materials and can be degenerated to those based on the Tresca, von Mises, and twin-shear yield criteria. The dependences of the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane on different yield criteria and Poisson’s ratios are discussed. The results show that the influences of different yield criteria and Poisson’s ratio on the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane of the curved beam are significant. Once the value of bis obtained by experiments, the yield criterion and the corresponding solution for the materials of interest are then determined. 展开更多
关键词 curved beam plane strain strain hardening elastic-plastic bending unified yield criterion
下载PDF
TiC/AZ91D composites fabricated by in situ reactive infiltration process and its tensile deformation 被引量:4
3
作者 王继杰 郭金花 陈礼清 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第4期892-896,共5页
An innovative processing route was adopted to fabricate 42.1%(volume fraction) TiC/AZ91D magnesium matrix composites. The reinforcement TiC was in situ synthesized from elemental powders of Ti and C and the matrix mag... An innovative processing route was adopted to fabricate 42.1%(volume fraction) TiC/AZ91D magnesium matrix composites. The reinforcement TiC was in situ synthesized from elemental powders of Ti and C and the matrix magnesium alloy AZ91D pressurelessly infiltrated into the preform of Ti and C. A comparative tensile deformation tests were conducted on the as-synthesized TiC/AZ91D composites and magnesium alloy AZ91D. The true strain—stress curves were fitted by Hollomon relation and their failure mechanisms were finally analyzed. The results show that the in situ formed TiC can increase the tensile strength, and is especially effective at elevated temperatures. Theoretical calculation of the strain hardening exponent (n) for TiC/AZ91D composites indicates that the n value ranges from 0.71 to 0.82 when tensile deformation was carried out at 423?723 K and shows fracture with brittle characteristic. However, the n value of 0.11?0.32 obtained for the matrix alloy AZ91D shows typical ductile features at elevated temperatures. 展开更多
关键词 TIC/AZ91D 复合材料 拉伸变形 应变]硬化 破裂机构
下载PDF
Influence of pre-deformation on age-hardening response and mechanical properties of extruded Mg-6%Zn-1%Mn alloy 被引量:4
4
作者 石国梁 张丁非 +3 位作者 张红菊 赵霞兵 齐福刚 张奎 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期586-592,共7页
The effect of cold plastic deformation between solution treatment and artificial aging on the age-hardening response and mechanical properties of alloy was investigated by micro-hardness test,tensile test,optical micr... The effect of cold plastic deformation between solution treatment and artificial aging on the age-hardening response and mechanical properties of alloy was investigated by micro-hardness test,tensile test,optical microscopy(OM) and TEM observation.After solution treatment at 420 ℃ for 1 h,three kinds of pre-deformation strains,i.e.0,5% and 10%,were applied to extruded ZM61 bars.Age-hardening curves show that pre-deformation can significantly accelerate the precipitation kinetics and increase peak-hardness value;however,as pre-deformation strain rises from 5% to 10%,there is no gain in peak hardness value.The room temperature(RT) tensile properties demonstrate that increasing the pre-deformation degree can enhance the yield strength(YS) and ultimate tensile strength(UTS) but moderately reduce elongation(EL);furthermore,the enhancement of YS is larger than that of UTS.No twin can be observed in 5% pre-deformed microstructure;however,a large number of twins are activated after 10% pre-deformation.The peak-aged TEM microstructure shows that pre-deformation can increase the number density of rod-shaped β 1 ' precipitates which play a key role in strengthening ZM61 alloy. 展开更多
关键词 Mg-6%Zn-1%Mn(ZM61) PRE-DEFORMATION age-hardening response mechanical properties
下载PDF
Construction and solution of strain model along thickness of aluminum alloy plate under plastic deformation
5
作者 张舒原 廖凯 吴运新 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3381-3388,共8页
A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of str... A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of strain components under various loading conditions are linearly related and these points of ratios form a η-η line.Under these simple loadings,strains in thickness direction can be easily calculated by the η-η line equation without integral and differential work.When the plate is under more complicated loading conditions,the thickness can be computed by the proposed optimization and piecewise calculation model.Validation computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven theories and FE simulation.Therefore,the developed model can be applied to engineering calculation,e.g.pre-stretching analysis of aerospace aluminium thick plate,with acceptable accuracy. 展开更多
关键词 isotropic linear hardening thick plate strain model plastic deformation aluminum alloy
下载PDF
Plastic flow behavior of superalloy GH696 during hot deformation 被引量:1
6
作者 许赵华 李淼泉 李宏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期712-721,共10页
In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the de... In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the deformation amount of all the samples was 50%. The strain rate sensitivity exponent (m) and strain hardening exponent (n) under different deformation conditions were calculated, meanwhile the effects of the processing parameters on the values ofm andn were analyzed. The results show that the flow stress increases with the increase of strain rate and the decrease of deformation temperature. The value ofm increases with the increase of deformation temperature and decreases with the increase of strain rate, while the value ofn decreases with the increase of deformation temperature. A novel flow stress model during hot deformation of superalloy GH696 was also established. And the calculated flow stress of the alloy is in good agreement with the experimental one. 展开更多
关键词 superalloy GH696 flow stress deformation behavior strain rate sensitivity exponent strain hardening exponent flow stress model
下载PDF
Grain refinement and mechanical properties of pure aluminum processed by accumulative extrusion bonding 被引量:13
7
作者 Xiang CHEN Guang-sheng HUANG +5 位作者 Shuai-shuai LIU Ting-zhuang HAN Bin JIANG Ai-tao TANG Yun-tian ZHU Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第3期437-447,共11页
Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an av... Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an average grain size of ~440 nm was obtained after six passes. Tensile testing revealed that the strength reached the maximum value of 195 MPa and the total elongation exceeded 16% after five passes. The hardness was also significantly improved and almost reached saturation after the first pass. SEM fractography of AEB-processed specimens after tensile test showed that failure mode was shear ductile fracture with elongated shallow dimples. Comparison with conventional accumulative roll bonding indicates that this new AEB technique is more effective in refining grain and improving mechanical properties of the specimens. 展开更多
关键词 ALUMINUM accumulative extrusion bonding microstructure mechanical properties strain hardening rate
下载PDF
Cryogenic forming behaviour of AW-6016-T4 sheet 被引量:5
8
作者 M.KUMAR N.SOTIROV +2 位作者 F.GRABNER R.SCHNEIDER G.MOZDZEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第6期1257-1263,共7页
The objective of this work is to study the cryogenic sheet metal forming behaviour of precipitation hardening AW-6016-T4.In this regard,the flow curves and forming limit curves were obtained by tension and Nakazima ex... The objective of this work is to study the cryogenic sheet metal forming behaviour of precipitation hardening AW-6016-T4.In this regard,the flow curves and forming limit curves were obtained by tension and Nakazima experimental testing methods in thetemperature ranges from-196to25°C.It was found that strength and elongation increase with decreasing temperature.Small butperceived differences between microstructure of the material deformed at the room and cryogenic temperatures respectively wereidentified by electron backscatter diffraction(EBSD)analysis.However,no significant difference in the precipitation kinetics duringcontinuous heating in the DSC has been observed.This study has demonstrated the potential of cryogenic forming by manufacturinga B-pillar part with8mm depth of side design element as compared to6mm at room temperature. 展开更多
关键词 AW-6016-T4 alloy cryogenic forming strain hardening forming limit curve
下载PDF
Effect of strain hardening and strain softening on welding distortion and residual stress of A7N01-T4 aluminum alloy by simulation analysis 被引量:8
9
作者 闫德俊 刘雪松 +2 位作者 李军 杨建国 方洪渊 《Journal of Central South University》 SCIE EI CAS 2010年第4期666-673,共8页
The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite... The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite simulation method. The simulation results show that the weld seam undergoes strain hardening in the temperature range of 180-250 ℃, however, it exhibits strain softening at temperature above 250 ℃ during welding heating and cooling process. As a result, the strain hardening and strain softening effects counteract each other, introducing slightly influence on the welding residual stress, residual plastic strain and distortion. The welding longitudinal residual stress was determined by ultrasonic stress measurement method for the flat plates of A7N01-T4 aluminum alloy. The simulation results are well accordant with test ones. 展开更多
关键词 strain hardening strain softening plastic strain welding residual stress
下载PDF
Plastic characterization of metals by combining nanoindentation test and finite element simulation 被引量:5
10
《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2368-2373,共6页
Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a goo... Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress ay of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe andA1 alloy. 展开更多
关键词 NANOINDENTATION finite element simulation representative stress representative stain initial yield stress
下载PDF
Deformation behavior of high performance fiber reinforced cementitious composite prepared with asphalt emulsion 被引量:4
11
作者 何锐 陈拴发 +1 位作者 孙文娟 弓锐 《Journal of Central South University》 SCIE EI CAS 2014年第2期811-816,共6页
A novel engineered cementitious composite(ECC) was prepared with the complex binder of Portland cement and asphalt emulsion.By adjusting the amount of asphalt emulsion,different mixture proportions were adopted in exp... A novel engineered cementitious composite(ECC) was prepared with the complex binder of Portland cement and asphalt emulsion.By adjusting the amount of asphalt emulsion,different mixture proportions were adopted in experiments,including four-point bending test,compressive test,and scanning electric microscopy(SEM).The SEM observation was conducted to evaluate the contribution of polyvinyl alcohol(PVA) fiber and asphalt emulsion to the composite toughening mechanism.The tests results show that the most remarkable deflection-hardening behavior and saturated multiple cracking are achieved when the content of asphalt emulsion is 10%.However,excessive content of asphalt emulsion causes severe damages on the deformation behavior as well as loss in compressive strength of the mixture.SEM observation indicates that the influence of asphalt emulsion on the fiber/matrix interfacial property changes the dominant fiber failure type from rupture into pull-out mode,and thus causes beneficial effects for strain-hardening behavior. 展开更多
关键词 TOUGHNESS deformation behavior engineered cementitious composite asphalt emulsion
下载PDF
New double yield surface model for coarse granular materials incorporating nonlinear unified failure criterion 被引量:3
12
作者 刘萌成 刘汉龙 高玉峰 《Journal of Central South University》 SCIE EI CAS 2012年第11期3236-3243,共8页
A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compres... A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compressive plastic deformation, were taken into account in this model, These two deformation mechanisms were described by the shear and compressive yield functions, respectively. The Lode angle dependent formulations of proposed model were deduced by incorporating a 3D nonlinear unified failure criterion. Some comparisons were presented between the numerical predictions of proposed model and test data of true triaxial tests on the modeled rockfills. The model predictions are in good agreement with the test data and capture the strain hardening and plastic volumetric dilation of CGMs. These findings verify the reasonability of current DYS model, and indicate that this model is well suited to reproduce the stress-strain-volume change behavior of CGMs in general. 展开更多
关键词 constitutive model coarse granular material failure criterion DILATANCY yield surface
下载PDF
Tensile properties of strain-hardening cementitious composites containing polyvinyl-alcohol fibers hybridized with polypropylene fibers 被引量:4
13
作者 H.R.Pakravan M.Jamshidi 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期51-59,共9页
Partially replacing polyvinyl-alcohol(PVA)fibers with polypropylene(PP)fibers in strain-hardening cementitious composites(fiber hybridization)modify certain mechanical properties of these materials.The hybridization b... Partially replacing polyvinyl-alcohol(PVA)fibers with polypropylene(PP)fibers in strain-hardening cementitious composites(fiber hybridization)modify certain mechanical properties of these materials.The hybridization based on the introduction of low-modulus hydrophobic polypropylene fibers improves the ductility and the strain-hardening behavior of the cementitious composites containing polyvinyl-alcohol fibers of different types(PVA-SHCC).Pull-out tests indicate that adding PP fibers increases the energy capacity of the hybrid composite with respect to the material containing only PVA fibers under tensile loading,and PP-fiber geometry(i.e.,section shape and length)is a key factor in enhancing the strain capacity. 展开更多
关键词 polyvinyl-alcohol (PVA) strain-hardening cementitious composite (PVA-SHCC) fiber hybridization
下载PDF
Effect of twin-roll casting parameters on microstructure and mechanical properties of AA5083-H321 sheet 被引量:1
14
作者 A.HOSEINIFAR S.SALARI M.SOLTAN ALI NEZHAD 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2552-2560,共9页
Thepurpose of the present paper is to study the mechanical propertiesand microstructureof the twin-roll cast and cold rolled AA5083 aluminum alloy sheet in strain-hardened H321 temper. To reach this goal, first, a sou... Thepurpose of the present paper is to study the mechanical propertiesand microstructureof the twin-roll cast and cold rolled AA5083 aluminum alloy sheet in strain-hardened H321 temper. To reach this goal, first, a sound surface slab of 8.90 mm thick and 1260 mm wide was cast by a 15°; tilt back twin roll caster at a casting speed of 490 mm/min. After homogenization at 520 ℃, the product was cold rolled to two thicknesses of 6.30 mm and 3.85 mm with an intermediate annealing at 370 ℃ and final stabilization at 180 ℃. Opticalmicroscopyand scanning electron microscopy (SEM) investigations of the as-cast state depicted the segregation of intermetallic particles mainly in grain boundaries which wasthe cause of grain removal observed in the fracture surface of tensile test samples. In addition, mechanical properties indicated an increase in total elongation after homogenization heat treatment dueto the elimination of the grain boundary segregations. Finally, it was observed that the properties of the 3.85 mmthick sheet were consistent with the H321 temper requirements according to ASTM B 290M standard due to applying sufficient cold reduction during cold rolling stage. 展开更多
关键词 AA5083 aluminum alloy twin-roll casting cold rolling H321 strain-hardened temper
下载PDF
Equivalent strain hardening exponent of anisotropic materials based on spherical indentation response 被引量:1
15
作者 Yu HUI Jian-jun WU +2 位作者 Ming-zhi WANG Xue-peng ZHAN He FAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第1期77-87,共11页
Uniaxial strain hardening exponent is not suitable for describing the strain hardening behaviors of the anisotropic materials, especially when material deforms in the multi-axial stress states. In this work, a novel m... Uniaxial strain hardening exponent is not suitable for describing the strain hardening behaviors of the anisotropic materials, especially when material deforms in the multi-axial stress states. In this work, a novel method was proposed to estimate the equivalent strain hardening exponent of anisotropic materials based on an equivalent energy method. By performing extensive finite element (FE) simulations of the spherical indentation on anisotropic materials, dimensionless function was proposed to correlate the strain hardening exponent of anisotropic materials with the indentation imprint parameters. And then, a mathematic expression on the strain hardening exponent of anisotropic materials with the indentation imprint was established to estimate the equivalent strain hardening exponent of anisotropic materials by directly solving this dimensionless function. Additionally, Meyer equation was modified to determine the yield stress of anisotropic materials. The effectiveness and reliability of the new method were verified by the numerical examples and by its application on the TC1M engineering material. 展开更多
关键词 equivalent strain hardening exponent anisotropic material spherical indentation residual imprint
下载PDF
Effects of Heat Softening on Initiation of Landslides 被引量:1
16
作者 XIONG Chuan-xiang LU Xiao-bing +1 位作者 HUANG Wei-da WANG Cheng-hua 《Journal of Mountain Science》 SCIE CSCD 2014年第6期1571-1578,共8页
Effects of heat softening on the initiation of slide surface(shear banding) in clayey slopes during fast deformation were discussed.Controlling equations considering heat,pore pressure and mechanical movement were pre... Effects of heat softening on the initiation of slide surface(shear banding) in clayey slopes during fast deformation were discussed.Controlling equations considering heat,pore pressure and mechanical movement were presented.By perturbation method,the instability condition of localized zone(i.e.criterion for initiation of shear banding) for thermal related soils,such as clayey slope,was obtained.It is shown that slide surface initiates once the thermal-softening effects overcome the strain-hardening effects whether it is adiabatic or not.Without strain hardening effects,strain rate hardening obviously plays a role in initiation of shear band.During initiating process,heat is trapped inside the shear band,which leads rapidly to a pore pressure increase and fast loss of strength.The localized shear strain is concentrated in a narrow zone with a width of several centimeters at most and increases fast.This zone forms the sliding surface.Temperature can increase more than 2?C,pore pressure can increase 160% in about 0.1s inside this zone.These changes cause the fast decrease in friction-coefficient by about 36% over the initial value.That is how shear band initiated and developed in clayey slopes. 展开更多
关键词 LANDSLIDE Thermo-effect Slide surface INITIATION
下载PDF
Influence of processing parameters on laser metal deposited copper and titanium alloy composites
17
作者 Mutiu F.ERINOSHO Esther T.AKINLABI Sisa PITYANA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2608-2616,共9页
The laser metal deposition (LMD) was conducted on copper by varying the processing parameters in order to achieve the best possible settings. Two sets of experiments were conducted. The deposited composites were cha... The laser metal deposition (LMD) was conducted on copper by varying the processing parameters in order to achieve the best possible settings. Two sets of experiments were conducted. The deposited composites were characterized through the evolving microstructure, microhardness profiling and mechanical properties. It was found that the evolving microstructures of the deposited composites were characterized with primary, secondary and tertiary arms dendrites, acicular microstructure as well as the alpha and beta eutectic structures. From the two sets of experiments performed, it was found that Sample E produced at a laser power of 1200 W and a scanning speed of 1.2 m/min has the highest hardness of HV (190±42) but exhibits some lateral cracks due to its brittle nature, while Sample B produced at laser power of 1200 W and a scanning speed of 0.3 m/min shows no crack and a good microstructure with an increase in dendrites. The strain hardening coefficient of the deposited copper composite obtained in this experiment is 3.35. 展开更多
关键词 copper composites laser metal deposition mechanical properties strain hardening
下载PDF
Primary and recency effects based on loading path in classical plasticity 被引量:2
18
作者 GAO Yue SHAO Fei +3 位作者 FAN Peng-xian XU Qian GU Juan WANG Shang-long 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2592-2605,共14页
We have established an elastoplastic analysis model to explore the effect of loading path in an incompressible thin-walled tube under the combined action of axial force and torque based on Mises yield condition and is... We have established an elastoplastic analysis model to explore the effect of loading path in an incompressible thin-walled tube under the combined action of axial force and torque based on Mises yield condition and isotropic linear hardening assumption.Further,four stress areas(σx,τx)are divided according to the characteristics of the final stress,and the plastic stress-strain relationship of twelve stress paths in different stress areas is derived.The"primary effect"of the stress path on plastic strain is demonstrated,namely,the plastic strain caused by the pre-loaded stress in path A(tensile stress is initially applied,followed by shear stress)is always greater than that caused by the post-loaded stress in path C(shear stress is initially applied,followed by tensile stress)irrespective of the value of final stress.The"recency effect"of the strain path on the stress is also established,which indicates that the stress caused by the post-loaded strain in path A is always greater than that caused by the pre-loaded strain in path C irrespective of the value of final strain.From the perspective of deformation,the"primary effect"of the stress path on the plastic strain and the"recency effect"of the strain path on the stress are unified.These effects are succinct and universal,and they provide useful insights on the plastic stress-strain relationship under different loading paths.Furthermore,they can serve as a useful reference for optimizing the processing technologies and construction procedures. 展开更多
关键词 isotropic linear hardening stress path strain path primary effect recency effect
下载PDF
Flow behavior and fracture of Al−Mg−Si alloy at cryogenic temperatures 被引量:3
19
作者 Danielle Cristina Camilo MAGALHAES Andrea Madeira KLIAUGA Vitor Luiz SORDI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期595-608,共14页
The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile... The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile tests at 298,173 and 77 K and tested at strain rates in the range from 0.1 to 0.0001 s^(−1).The results indicate the suppression of the Portevin−Le Chatelier(PLC)effect and dynamic strain aging(DSA)at 77 K.In contrast,at 298 K,a remarkable serrated flow,characteristic of the PLC effect,is observed.Furthermore,the tensile behavior at 77 K,compared with that observed at 173 and 298 K,shows a simultaneous increase in strength,uniform elongation,modulus of toughness,strain-hardening exponent and strain rate sensitivity,which is related to a decrease in the dynamic recovery rate at low temperature.These responses are reflected on the fracture morphology,since the dimple size decreases at 77 K,while the area covered by dimples increases.Comparisons of the Johnson−Cook model show that a good agreement can be obtained for tests at 173 and 77 K,in which DSA is suppressed. 展开更多
关键词 cryogenic temperature aluminum alloy flow behavior strain rate sensitivity work-hardening behavior Johnson−Cook model FRACTURE
下载PDF
Formability of the AMS 5596 Sheet in Comparison with EDDQ Steel Sheet
20
《Journal of Mechanics Engineering and Automation》 2014年第1期72-77,共6页
Some materials form better than others, moreover, a material that has the best formability for one stamping may behave very poorly in a stamping of another Configuration. The forming limit of a metal sheet is generall... Some materials form better than others, moreover, a material that has the best formability for one stamping may behave very poorly in a stamping of another Configuration. The forming limit of a metal sheet is generally given in terms of the limiting principal strains under different loading conditions and represented by the so-called FLD (forming limit diagram). In view of the difficulty to experimentally determine the forming limits, many researchers have sought to predict FLD. The formability of sheet metal has frequently been expressed by the value of strain hardening exponent and plastic anisotropy ratio. The stress-strain and hardening behaviour of a material is very important in determining its resistance to plastic instability. For these reasons, extensive test programs are often carried out in an attempt to correlate material formability with value of some mechanical properties. In this study, mechanical properties and the FLD of the AMS 5596 sheet metal was determined by using uniaxial tensile test and Marciniak's flat bottomed punch test respectively. 展开更多
关键词 Sheet metal FORMABILITY limit strain strain hardening plastic anisotropy.
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部