In the last two decades, there has been substantial development in the diagnostic possibilities for examining the small intestine. Compared with computerized tomography, magnetic resonance imaging, capsule endoscopy a...In the last two decades, there has been substantial development in the diagnostic possibilities for examining the small intestine. Compared with computerized tomography, magnetic resonance imaging, capsule endoscopy and double-balloon endoscopy, ultrasonography has the advantage of being cheap, portable, flexible and user-and patient-friendly, while at the same time providing the clinician with image data of high temporal and spatial resolution. The method has limitations with penetration in obesity and with intestinal air impairing image quality. The flexibility ultrasonography offers the examiner also implies that a systematic approach during scanning is needed. This paper reviews the basic scanning techniques and new modalities such as contrast-enhanced ultrasound, elastography, strain rate imaging, hydrosonography, allergosonography, endoscopic sonography and nutritional imaging, and the literature on disease-specific findings in the small intestine. Some of these methods have shown clinical benefit, while others are under research and development to establish their role in the diagnostic repertoire. However, along with improved overall image quality of new ultrasound scanners, these methodshave enabled more anatomical and physiological changes in the small intestine to be observed. Accordingly, ultrasound of the small intestine is an attractive clinical tool to study patients with a range of diseases.展开更多
In this paper, we review our researches on the topics of the structural health monitoring (SHM) with the fiber-optic distributed strain sensor. Highly-dense information on strains in a structure can be useful to ide...In this paper, we review our researches on the topics of the structural health monitoring (SHM) with the fiber-optic distributed strain sensor. Highly-dense information on strains in a structure can be useful to identify some kind of existing damages or applied loads in implementation of SHM. The fiber-optic distributed sensors developed by the authors have been applied to the damage detection of a single-lap joint and load identification of a beam simply supported. We confirmed that the applicability of the distributed sensor to SHM could be improved as making the spatial resolution higher. In addition, we showed that the simulation technique considering both structural and optical effects seamlessly in strain measurement could be powerful tools to evaluate the performance of a sensing system and design it for SHM. Finally, the technique for simultaneous distributed strain and temperature measurement using the PANDA-fiber Bragg grating (FBG) is shown in this paper, because problems caused by the cross-sensitivity toward strain and temperature would be always inevitable in strain measurement for SHM.展开更多
A review of our recent work on ultrahigh resolution optical fiber sensors in the quasi-static region is presented, and their applications in crustal deformation measurement are introduced. Geophysical research such as...A review of our recent work on ultrahigh resolution optical fiber sensors in the quasi-static region is presented, and their applications in crustal deformation measurement are introduced. Geophysical research such as studies on earthquake and volcano requires monitoring the earth's crustal deformation continuously with a strain resolution on the order of nano-strains (ne) in static to low frequency region. Optical fiber sensors are very attractive due to their unique advantages such as low cost, small size, and easy deployment. However, the resolution of conventional optical fiber strain sensors is far from satisfactory in the quasi-static domain. In this paper, several types of recently developed fiber-optic sensors with ultrahigh resolution in the quasi-static domain are introduced, including a fiber Bragg grating (FBG) sensor interrogated with a narrow linewidth tunable laser, an FBG based fiber Fabry-Perot interferometer (FFPI) sensor by using a phase modulation technique, and an FFPI sensor with a sideband interrogation technique. Quantificational analyses and field experimental results demonstrated that the FBG sensor can provide nano-order strain resolution. The sub-nano strain resolution was also achieved by the FFPI sensors in laboratory. Above achievements provide the basis to develop powerful fiber-optic tools for geophysical research on crustal deformation monitoring.展开更多
This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spe...This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spectrum in a specially-designed fiber is firstly introduced. The complete discrimination of strain and temperature based on the Brillouin dynamic grating in a polarization maintaining fiber is extensively presented. The basic principle and two experimental schemes of distributed discrimination based on fiber optic nerve systems are demonstrated. The performance of the high discriminative accuracy (0.1 ~C-0.3 ~C and 5 kte-12~te) and high spatial resolution (-10 cm) with the effective measurement points of about 50 for a standard system configuration or about 1000 for a modified one will be highly expected in real industry applications.展开更多
基金Supported by Medviz.-an imaging and visualisation consortium between Haukeland University Hospital, University in Bergen and Christian Michelsen Research
文摘In the last two decades, there has been substantial development in the diagnostic possibilities for examining the small intestine. Compared with computerized tomography, magnetic resonance imaging, capsule endoscopy and double-balloon endoscopy, ultrasonography has the advantage of being cheap, portable, flexible and user-and patient-friendly, while at the same time providing the clinician with image data of high temporal and spatial resolution. The method has limitations with penetration in obesity and with intestinal air impairing image quality. The flexibility ultrasonography offers the examiner also implies that a systematic approach during scanning is needed. This paper reviews the basic scanning techniques and new modalities such as contrast-enhanced ultrasound, elastography, strain rate imaging, hydrosonography, allergosonography, endoscopic sonography and nutritional imaging, and the literature on disease-specific findings in the small intestine. Some of these methods have shown clinical benefit, while others are under research and development to establish their role in the diagnostic repertoire. However, along with improved overall image quality of new ultrasound scanners, these methodshave enabled more anatomical and physiological changes in the small intestine to be observed. Accordingly, ultrasound of the small intestine is an attractive clinical tool to study patients with a range of diseases.
文摘In this paper, we review our researches on the topics of the structural health monitoring (SHM) with the fiber-optic distributed strain sensor. Highly-dense information on strains in a structure can be useful to identify some kind of existing damages or applied loads in implementation of SHM. The fiber-optic distributed sensors developed by the authors have been applied to the damage detection of a single-lap joint and load identification of a beam simply supported. We confirmed that the applicability of the distributed sensor to SHM could be improved as making the spatial resolution higher. In addition, we showed that the simulation technique considering both structural and optical effects seamlessly in strain measurement could be powerful tools to evaluate the performance of a sensing system and design it for SHM. Finally, the technique for simultaneous distributed strain and temperature measurement using the PANDA-fiber Bragg grating (FBG) is shown in this paper, because problems caused by the cross-sensitivity toward strain and temperature would be always inevitable in strain measurement for SHM.
文摘A review of our recent work on ultrahigh resolution optical fiber sensors in the quasi-static region is presented, and their applications in crustal deformation measurement are introduced. Geophysical research such as studies on earthquake and volcano requires monitoring the earth's crustal deformation continuously with a strain resolution on the order of nano-strains (ne) in static to low frequency region. Optical fiber sensors are very attractive due to their unique advantages such as low cost, small size, and easy deployment. However, the resolution of conventional optical fiber strain sensors is far from satisfactory in the quasi-static domain. In this paper, several types of recently developed fiber-optic sensors with ultrahigh resolution in the quasi-static domain are introduced, including a fiber Bragg grating (FBG) sensor interrogated with a narrow linewidth tunable laser, an FBG based fiber Fabry-Perot interferometer (FFPI) sensor by using a phase modulation technique, and an FFPI sensor with a sideband interrogation technique. Quantificational analyses and field experimental results demonstrated that the FBG sensor can provide nano-order strain resolution. The sub-nano strain resolution was also achieved by the FFPI sensors in laboratory. Above achievements provide the basis to develop powerful fiber-optic tools for geophysical research on crustal deformation monitoring.
文摘This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spectrum in a specially-designed fiber is firstly introduced. The complete discrimination of strain and temperature based on the Brillouin dynamic grating in a polarization maintaining fiber is extensively presented. The basic principle and two experimental schemes of distributed discrimination based on fiber optic nerve systems are demonstrated. The performance of the high discriminative accuracy (0.1 ~C-0.3 ~C and 5 kte-12~te) and high spatial resolution (-10 cm) with the effective measurement points of about 50 for a standard system configuration or about 1000 for a modified one will be highly expected in real industry applications.