Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. Th...Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. The result shows that the DRZ, the mixture of TiAl3 and Al, grows layer by layer along their chemical equilibrium zone. In the course, the growth interface moves toward the aluminum side. TiAl3 is the only new phase which forms earliest in the course of heat-treatment. The growth mechanism of the DRZ changes after the phase transition of titanium. Before the phase transition of titanium, the growth of the DRZ is controlled by the dissolution speed of the titanium to the molten aluminum, while after the phase transition of titanium, the growth is controlled by the chemical reaction speed of Al and Ti atoms, and consequently, its growth rate is greatly increased.展开更多
The commercialization of proton exchange membrane fuel cells(PEMFCs)could provide a cleaner energy society in the near future.However,the sluggish reaction kinetics and harsh conditions of the oxygen reduction reactio...The commercialization of proton exchange membrane fuel cells(PEMFCs)could provide a cleaner energy society in the near future.However,the sluggish reaction kinetics and harsh conditions of the oxygen reduction reaction affect the durability and cost of PEMFCs.Most previous reports on Pt-based electrocatalyst designs have focused more on improving their activity;however,with the commercialization of PEMFCs,durability has received increasing attention.In-depth insight into the structural evolution of Pt-based electrocatalysts throughout their lifecycle can contribute to further optimization of their activity and durability.The development of in situ electron microscopy and other in situ techniques has promoted the elucidation of the evolution mechanism.This mini review highlights recent advances in the structural evolution of Pt-based electrocatalysts.The mechanisms are adequately discussed,and some methods to inhibit or exploit the structural evolution of the catalysts are also briefly reviewed.展开更多
Based on the diffusion channel,the influence of Si content on the microstructure evolution of iron-based hot-dip Al-χSi coating was analyzed(χ=0,1.5 wt%,3.0 wt% and 7.0 wt%).The results show that the introduction of...Based on the diffusion channel,the influence of Si content on the microstructure evolution of iron-based hot-dip Al-χSi coating was analyzed(χ=0,1.5 wt%,3.0 wt% and 7.0 wt%).The results show that the introduction of Si makes the reaction interface change from the lingual-tooth interface of hot-dip Al to the flat interface of hot-dip Al-Si.It also reduces the thickness of the alloy layer in the coating,especially the Fe_(2)Al_(5) layer.When the Si content is 1.5 wt%or 3.0 wt%,the diffusion channel crosses the conjugate line of the two-phase region(FeAl_(3)+liquid phase)into the FeAl_(3) single-phase region,and then moves to the region with higher Si content.Next,the diffusion channel cuts off the conjugate line of FeAl_(3)phase,τ_(1)/τ_(9) phase,and Fe_(2)Al_(5)phase,which promotes the form ofτ_(1)/τ_(9) phase.The formedτ_(1)/τ_(9) phase inhibits the diffusion between Fe and Al atoms.When the Si content is 7.0 wt%,the diffusion channel passes through the two-phase region(liquid phase+τ_(5))and enters theτ_(5) single-phase region.The form ofτ_(5) single-phase region has a strong inhibitory effect on the interatomic diffusion of Fe and Al,thereby reducing the thickness of the coating,especially the Fe_(2)Al_(5)layer.展开更多
Fusion hindrance in the radial degree of freedom for massive nuclear reactions is known for a long time. However the present work shows that the fusion hindrance also exists in the neck evolution. We calculate the pot...Fusion hindrance in the radial degree of freedom for massive nuclear reactions is known for a long time. However the present work shows that the fusion hindrance also exists in the neck evolution. We calculate the potential at different distances and different neck parameters by the two-center liquid drop model and then check whether fusion hindrance exists in the neck evolution by examing the sign of slope of potential vs. the neck parameter. The area of fusion hindrance in the neck evolution is shown.展开更多
基金Project (ZR2011EL023) supported by the Natural Science Foundation of Shandong Province,ChinaProject (12CX04057A) supported by the Fundamental Research Funds for the Central Universities,China
文摘Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. The result shows that the DRZ, the mixture of TiAl3 and Al, grows layer by layer along their chemical equilibrium zone. In the course, the growth interface moves toward the aluminum side. TiAl3 is the only new phase which forms earliest in the course of heat-treatment. The growth mechanism of the DRZ changes after the phase transition of titanium. Before the phase transition of titanium, the growth of the DRZ is controlled by the dissolution speed of the titanium to the molten aluminum, while after the phase transition of titanium, the growth is controlled by the chemical reaction speed of Al and Ti atoms, and consequently, its growth rate is greatly increased.
文摘The commercialization of proton exchange membrane fuel cells(PEMFCs)could provide a cleaner energy society in the near future.However,the sluggish reaction kinetics and harsh conditions of the oxygen reduction reaction affect the durability and cost of PEMFCs.Most previous reports on Pt-based electrocatalyst designs have focused more on improving their activity;however,with the commercialization of PEMFCs,durability has received increasing attention.In-depth insight into the structural evolution of Pt-based electrocatalysts throughout their lifecycle can contribute to further optimization of their activity and durability.The development of in situ electron microscopy and other in situ techniques has promoted the elucidation of the evolution mechanism.This mini review highlights recent advances in the structural evolution of Pt-based electrocatalysts.The mechanisms are adequately discussed,and some methods to inhibit or exploit the structural evolution of the catalysts are also briefly reviewed.
基金Projects(51971039,51671037)supported by the National Natural Science Foundation of ChinaProject(19KJA530001)supported by the Natural Science Research Project of Higher Education of Jiangsu,ChinaProject(KYCX21_2868)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China。
文摘Based on the diffusion channel,the influence of Si content on the microstructure evolution of iron-based hot-dip Al-χSi coating was analyzed(χ=0,1.5 wt%,3.0 wt% and 7.0 wt%).The results show that the introduction of Si makes the reaction interface change from the lingual-tooth interface of hot-dip Al to the flat interface of hot-dip Al-Si.It also reduces the thickness of the alloy layer in the coating,especially the Fe_(2)Al_(5) layer.When the Si content is 1.5 wt%or 3.0 wt%,the diffusion channel crosses the conjugate line of the two-phase region(FeAl_(3)+liquid phase)into the FeAl_(3) single-phase region,and then moves to the region with higher Si content.Next,the diffusion channel cuts off the conjugate line of FeAl_(3)phase,τ_(1)/τ_(9) phase,and Fe_(2)Al_(5)phase,which promotes the form ofτ_(1)/τ_(9) phase.The formedτ_(1)/τ_(9) phase inhibits the diffusion between Fe and Al atoms.When the Si content is 7.0 wt%,the diffusion channel passes through the two-phase region(liquid phase+τ_(5))and enters theτ_(5) single-phase region.The form ofτ_(5) single-phase region has a strong inhibitory effect on the interatomic diffusion of Fe and Al,thereby reducing the thickness of the coating,especially the Fe_(2)Al_(5)layer.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10979024, 10905021, and 10979023)the Key Project of Science and Technology Research of the Ministry of Education of China (Grant No. 209053)the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6090210)
文摘Fusion hindrance in the radial degree of freedom for massive nuclear reactions is known for a long time. However the present work shows that the fusion hindrance also exists in the neck evolution. We calculate the potential at different distances and different neck parameters by the two-center liquid drop model and then check whether fusion hindrance exists in the neck evolution by examing the sign of slope of potential vs. the neck parameter. The area of fusion hindrance in the neck evolution is shown.