The calculation model for the relaxation loss of concrete mentioned in the Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts(JTG D62—2004) was modified according to experime...The calculation model for the relaxation loss of concrete mentioned in the Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts(JTG D62—2004) was modified according to experimental data. Time-varying relaxation loss was considered in the new model. Moreover, prestressed reinforcement with varying lengths(caused by the shrinkage and creep of concrete) might influence the final values and the time-varying function of the forecast relaxation loss. Hence, the effects of concrete shrinkage and creep were considered when calculating prestress loss, which reflected the coupling relation between these effects and relaxation loss in concrete. Hence, the forecast relaxation loss of prestressed reinforcement under the effects of different initial stress levels at any time point can be calculated using the modified model. To simplify the calculation, the integral expression of the model can be changed into an algebraic equation. The accuracy of the result is related to the division of the periods within the ending time of deriving the final value of the relaxation loss of prestressed reinforcement. When the time division is reasonable, result accuracy is high. The modified model works excellently according to the comparison of the test results. The calculation result of the modified model mainly reflects the prestress loss values of prestressed reinforcement at each time point, which confirms that adopting the finding in practical applications is reasonable.展开更多
The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging fr...The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging from room temperature to 800 °C.Our results show that:1) the temperature has not clear effect on the mechanical properties of limestone from room temperature to 600 °C.However, the mechanical properties of limestone deteriorate rapidly when the temperature is above 600 °C.In this case, the peak stress and modulus of elasticity decrease rapidly.When the temperature reaches 800 °C, the entire process, showing the stress-strain curve is displayed indicating an obvious state of plastic-deformation;2) the failure mode of limestone shows the breakdown of tensile strength from room temperature to 600 °C, as well as the compress shearing damage over 600 °C;3) combining our test results with the concept of thermal damage, a thermal damage equation was derived.展开更多
High-temperature superconductors in superconductor apparatuses are subjected to mechanical strains under operating conditions.These strains cause the degradation of the critical current densities and influence AC loss...High-temperature superconductors in superconductor apparatuses are subjected to mechanical strains under operating conditions.These strains cause the degradation of the critical current densities and influence AC losses in the superconductors.Based on the dynamic process of thermomagnetic interaction,we report the results of numerical analysis of AC losses in an infinite high-temperature superconducting slab subjected to a uniform in-plane strain in an alternating external magnetic field parallel to the sample surface.The numerical analysis shows the details of electromagnetic phenomena in the slab and the dependences of AC loss on various external parameters including the uniform strain in the slab and the amplitude and frequency of the external magnetic field.In this paper,we find that whether the magnetic field fully penetrates the superconductor is the key factor that influences the features of AC loss.When the magnetic field cannot fully penetrate the superconductor,the loss rises with increasing strain or decreasing frequency.When the magnetic field can fully penetrate the superconductor,the feature is just opposite.We also analyze the effects of periodic strain on AC loss.It is interesting to find that when the periodic strain frequency equals the external magnetic field frequency,the AC loss reaches the maximum,regardless if the magnetic field fully penetrates the superconductor or not.展开更多
In this study, the role of melanopsin-expressing retinal ganglion cells (mRGCs) in the glaucoma-induced depressive behavioral response pattern was investigated. The CFP-D2 transgenic glaucoma animal model from five ...In this study, the role of melanopsin-expressing retinal ganglion cells (mRGCs) in the glaucoma-induced depressive behavioral response pattern was investigated. The CFP-D2 transgenic glaucoma animal model from five age groups was used in this study. Immunohistochemical labeling, quantitative analysis of mRGC morphology, open field test (OFT), and statistical analysis were used. In comparison with C57 BL/6 mice, the age-matched CFP-D2 mice had significantly elevated intraocular pressure (lOP). We observed parallel morphological changes in the retina, including a reduction in the density of cyan fluorescent protein- (CFP) expressing cells (cells mm^-2 at 2 months of age, 1309±26; 14 months, 878±30, P〈0.001), mRGCs (2 months, 48_+3; 14 months, 19±4, P〈0.001), Brn3b-expressing RGCs (2 months, 1283±80; 14 months, 950±31, P〈0.001), Brn-3b expressing mRGCs (5 months, 50.17%±5.5%; 14 months, 12.61%±3.8%, P〈0.001), and reduction in the dendritic field size of mRGCs (mm^2 at 2 months, 0.077±0.015; 14 months, 0.065±0.015, P〈0.05). CFP-D2 mice had hyperactive locomotor activity patterns based on OFT findings of the total distance traveled, number of entries into the center, and time spent in the center of the testing apparatus. The glaucoma induced hyperactive response pattern could be associated with dysfunctional mRGCs, most likely Brn-3b-positive mRGCs in CFP-D2 mice.展开更多
基金Project(51551801)supported by the National Natural Science Foundation of ChinaProject(14JJ4062)supported by the Natural Science Foundation of Hunan Province,China
文摘The calculation model for the relaxation loss of concrete mentioned in the Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts(JTG D62—2004) was modified according to experimental data. Time-varying relaxation loss was considered in the new model. Moreover, prestressed reinforcement with varying lengths(caused by the shrinkage and creep of concrete) might influence the final values and the time-varying function of the forecast relaxation loss. Hence, the effects of concrete shrinkage and creep were considered when calculating prestress loss, which reflected the coupling relation between these effects and relaxation loss in concrete. Hence, the forecast relaxation loss of prestressed reinforcement under the effects of different initial stress levels at any time point can be calculated using the modified model. To simplify the calculation, the integral expression of the model can be changed into an algebraic equation. The accuracy of the result is related to the division of the periods within the ending time of deriving the final value of the relaxation loss of prestressed reinforcement. When the time division is reasonable, result accuracy is high. The modified model works excellently according to the comparison of the test results. The calculation result of the modified model mainly reflects the prestress loss values of prestressed reinforcement at each time point, which confirms that adopting the finding in practical applications is reasonable.
基金Projects 50490273 supported by the National Natural Science Foundation of China2007CB209400 by the National Basic Research Program of China+1 种基金08KJD130003 by the Basic Research Program of University in Jiangsu ProvinceXKY2007219 by Xuzhou Institute of Technology
文摘The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging from room temperature to 800 °C.Our results show that:1) the temperature has not clear effect on the mechanical properties of limestone from room temperature to 600 °C.However, the mechanical properties of limestone deteriorate rapidly when the temperature is above 600 °C.In this case, the peak stress and modulus of elasticity decrease rapidly.When the temperature reaches 800 °C, the entire process, showing the stress-strain curve is displayed indicating an obvious state of plastic-deformation;2) the failure mode of limestone shows the breakdown of tensile strength from room temperature to 600 °C, as well as the compress shearing damage over 600 °C;3) combining our test results with the concept of thermal damage, a thermal damage equation was derived.
基金supported by the National Natural Science Foundation of China(Grant Nos.11032006,11121202 and 11202087)National Key Project of Magneto-Constrained Fusion Energy Development Program(Grant No.2013GB110002)
文摘High-temperature superconductors in superconductor apparatuses are subjected to mechanical strains under operating conditions.These strains cause the degradation of the critical current densities and influence AC losses in the superconductors.Based on the dynamic process of thermomagnetic interaction,we report the results of numerical analysis of AC losses in an infinite high-temperature superconducting slab subjected to a uniform in-plane strain in an alternating external magnetic field parallel to the sample surface.The numerical analysis shows the details of electromagnetic phenomena in the slab and the dependences of AC loss on various external parameters including the uniform strain in the slab and the amplitude and frequency of the external magnetic field.In this paper,we find that whether the magnetic field fully penetrates the superconductor is the key factor that influences the features of AC loss.When the magnetic field cannot fully penetrate the superconductor,the loss rises with increasing strain or decreasing frequency.When the magnetic field can fully penetrate the superconductor,the feature is just opposite.We also analyze the effects of periodic strain on AC loss.It is interesting to find that when the periodic strain frequency equals the external magnetic field frequency,the AC loss reaches the maximum,regardless if the magnetic field fully penetrates the superconductor or not.
基金supported by the National Basic Research Program of China (2009CB320900 to Pu MingLiang,2011CB510206 to Pu MingLiangand Gao Jie)National Natural Science Foundation of China(30831160516 to Pu MingLiang)+2 种基金NIH EY04067 (N.C. Brecha)VAMerit Review (N.C. Brecha).supported by a summer fellowship from the PKU-UCLA Joint Research Institute
文摘In this study, the role of melanopsin-expressing retinal ganglion cells (mRGCs) in the glaucoma-induced depressive behavioral response pattern was investigated. The CFP-D2 transgenic glaucoma animal model from five age groups was used in this study. Immunohistochemical labeling, quantitative analysis of mRGC morphology, open field test (OFT), and statistical analysis were used. In comparison with C57 BL/6 mice, the age-matched CFP-D2 mice had significantly elevated intraocular pressure (lOP). We observed parallel morphological changes in the retina, including a reduction in the density of cyan fluorescent protein- (CFP) expressing cells (cells mm^-2 at 2 months of age, 1309±26; 14 months, 878±30, P〈0.001), mRGCs (2 months, 48_+3; 14 months, 19±4, P〈0.001), Brn3b-expressing RGCs (2 months, 1283±80; 14 months, 950±31, P〈0.001), Brn-3b expressing mRGCs (5 months, 50.17%±5.5%; 14 months, 12.61%±3.8%, P〈0.001), and reduction in the dendritic field size of mRGCs (mm^2 at 2 months, 0.077±0.015; 14 months, 0.065±0.015, P〈0.05). CFP-D2 mice had hyperactive locomotor activity patterns based on OFT findings of the total distance traveled, number of entries into the center, and time spent in the center of the testing apparatus. The glaucoma induced hyperactive response pattern could be associated with dysfunctional mRGCs, most likely Brn-3b-positive mRGCs in CFP-D2 mice.