The two-pass equal channel angular extrusion (ECAE) process was introduced into strain-induced melt activation (SIMA) to predeform a ZK60 alloy with rare earth (RE) addition. Microstructure evolution of ECAE-formed ZK...The two-pass equal channel angular extrusion (ECAE) process was introduced into strain-induced melt activation (SIMA) to predeform a ZK60 alloy with rare earth (RE) addition. Microstructure evolution of ECAE-formed ZK60+RE alloy during reheating was investigated. Furthermore, tensile properties of thixoforged components were determined. The results show that the SIMA process can produce ideal microstructures, and spheroidized solid particles with little entrapped liquid can be obtained. With prolonging holding time, the size of solid particles increases and the degree of spheroidization is improved. The tensile properties of the thixoforged ZK60+RE samples are close to those of two-pass ECAE-formed samples.展开更多
文摘The two-pass equal channel angular extrusion (ECAE) process was introduced into strain-induced melt activation (SIMA) to predeform a ZK60 alloy with rare earth (RE) addition. Microstructure evolution of ECAE-formed ZK60+RE alloy during reheating was investigated. Furthermore, tensile properties of thixoforged components were determined. The results show that the SIMA process can produce ideal microstructures, and spheroidized solid particles with little entrapped liquid can be obtained. With prolonging holding time, the size of solid particles increases and the degree of spheroidization is improved. The tensile properties of the thixoforged ZK60+RE samples are close to those of two-pass ECAE-formed samples.